Department of Chemistry, University of California, Berkeley, CA 94720;
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
Proc Natl Acad Sci U S A. 2018 Oct 16;115(42):10576-10581. doi: 10.1073/pnas.1807125115. Epub 2018 Oct 2.
Dynamic nuclear polarization (DNP) has enabled enormous gains in magnetic resonance signals and led to vastly accelerated NMR/MRI imaging and spectroscopy. Unlike conventional -techniques, DNP methods that exploit the full electron spectrum are appealing since they allow direct participation of all electrons in the hyperpolarization process. Such methods typically entail sweeps of microwave radiation over the broad electron linewidth to excite DNP but are often inefficient because the sweeps, constrained by adiabaticity requirements, are slow. In this paper, we develop a technique to overcome the DNP bottlenecks set by the slow sweeps, using a swept microwave frequency comb that increases the effective number of polarization transfer events while respecting adiabaticity constraints. This allows a multiplicative gain in DNP enhancement, scaling with the number of comb frequencies and limited only by the hyperfine-mediated electron linewidth. We demonstrate the technique for the optical hyperpolarization of C nuclei in powdered microdiamonds at low fields, increasing the DNP enhancement from 30 to 100 measured with respect to the thermal signal at 7T. For low concentrations of broad linewidth electron radicals [e.g., TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl)], these multiplicative gains could exceed an order of magnitude.
动态核极化(DNP)极大地提高了磁共振信号,从而大大加快了 NMR/MRI 成像和光谱学的速度。与传统技术不同,利用全电子谱的 DNP 方法很有吸引力,因为它们允许所有电子直接参与超极化过程。此类方法通常需要在宽电子线宽上扫过微波辐射以激发 DNP,但通常效率不高,因为扫频受到绝热性要求的限制,速度较慢。在本文中,我们开发了一种克服慢扫频带来的 DNP 瓶颈的技术,使用扫频微波频梳来增加极化转移事件的有效数量,同时尊重绝热性限制。这允许 DNP 增强的乘法增益,与频梳频率的数量成比例,并且仅受超精细介导的电子线宽限制。我们在低场下对粉末微金刚石中的 C 核进行了光学超极化实验,相对于 7T 下的热信号,DNP 增强从 30 提高到 100。对于宽线宽电子自由基的低浓度[例如,TEMPO((2,2,6,6-四甲基哌啶-1-基)氧自由基)],这些乘法增益可能超过一个数量级。