Suppr超能文献

空气污染对呼吸道感染风险影响的随机建模。

Stochastic Modelling of Air Pollution Impacts on Respiratory Infection Risk.

机构信息

School of Mathematics and Information Science, Shaanxi Normal University, Xi'an, 710119, People's Republic of China.

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710048, People's Republic of China.

出版信息

Bull Math Biol. 2018 Dec;80(12):3127-3153. doi: 10.1007/s11538-018-0512-5. Epub 2018 Oct 2.

Abstract

The impact of air pollution on people's health and daily activities in China has recently aroused much attention. By using stochastic differential equations, variation in a 6 year long time series of air quality index (AQI) data, gathered from air quality monitoring sites in Xi'an from 15 November 2010 to 14 November 2016 was studied. Every year the extent of air pollution shifts from being serious to not so serious due to alterations in heat production systems. The distribution of such changes can be predicted by a Bayesian approach and the Gibbs sampler algorithm. The intervals between changes in a sequence indicate when the air pollution becomes increasingly serious. Also, the inflow rate of pollutants during the main pollution periods each year has an increasing trend. This study used a stochastic SEIS model associated with the AQI to explore the impact of air pollution on respiratory infections. Good fits to both the AQI data and the numbers of influenza-like illness cases were obtained by stochastic numerical simulation of the model. Based on the model's dynamics, the AQI time series and the daily number of respiratory infection cases under various government intervention measures and human protection strategies were forecasted. The AQI data in the last 15 months verified that government interventions on vehicles are effective in controlling air pollution, thus providing numerical support for policy formulation to address the haze crisis.

摘要

近年来,空气污染对中国民众健康和日常生活的影响引起了广泛关注。本研究采用随机微分方程,分析了 2010 年 11 月 15 日至 2016 年 11 月 14 日期间,西安空气质量监测站采集的长达 6 年的空气质量指数(AQI)数据的变化情况。由于供热系统的变化,每年的空气污染程度都由严重转为不那么严重。贝叶斯方法和吉布斯抽样算法可用于预测这种变化的分布。序列中变化之间的间隔表明空气污染变得越来越严重的时间。此外,每年主要污染期内污染物的流入率呈上升趋势。本研究采用与 AQI 相关的随机 SEIS 模型,探讨空气污染对呼吸道感染的影响。通过对模型的随机数值模拟,得到了与 AQI 数据和流感样病例数较好的拟合。基于模型的动力学,预测了在各种政府干预措施和人类保护策略下的 AQI 时间序列和每日呼吸道感染病例数。过去 15 个月的 AQI 数据验证了政府对车辆的干预措施在控制空气污染方面是有效的,从而为解决雾霾危机的政策制定提供了数值支持。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验