Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa, 52242, USA.
AAPS PharmSciTech. 2018 Nov;19(8):3430-3439. doi: 10.1208/s12249-018-1194-x. Epub 2018 Oct 2.
Describing the elastic deformation of single-crystal molecular solids under stress requires a comprehensive determination of the fourth-rank stiffness tensor (C). Single crystals are, however, rarely utilized in industrial applications, and thus averaging techniques (e.g., the Voigt or Reuss approach) are employed to reduce the C (or its inverse S) to polycrystalline aggregate mechanical moduli. With increasing elastic anisotropy, the Voigt and Reuss-averaged aggregate moduli can diverge dramatically and, provided that drug molecules almost exclusively crystallize into low-symmetry space groups, warrants a significant need for accurate aggregate mechanical moduli. This elasticity data, which currently is largely absent for pharmaceutical materials, is expected to aid understanding how materials respond to direct compression and tablet formation. Powder Brillouin light scattering (p-BLS) has recently demonstrated facile access to porosity-independent, aggregate mechanical moduli. In this study, we extend our previous p-BLS model for obtaining mechanical properties and validate our approach against a broad library of molecular solids with diverse intermolecular interaction topologies and with previously determined C which permits benchmarking our results. Our Young's and shear moduli determined with p-BLS strongly correlate, with limited bias (i.e., a near 1:1 relation), with the Voigt-averaged Young's and shear moduli determined using the C. Through follow-on tabletability studies, we introduce initial classifications of tabletability behavior based on the results of our p-BLS studies and the apparent elastic anisotropy. With further development, this approach represents a robust and novel method to potentially identify materials for optimum tabletability at early developmental stages.
描述单晶体分子固体在应力下的弹性变形需要全面确定四级刚度张量(C)。然而,单晶体在工业应用中很少使用,因此采用平均技术(例如 Voigt 或 Reuss 方法)将 C(或其逆 S)降低到多晶聚集体力学模量。随着弹性各向异性的增加,Voigt 和 Reuss 平均聚集体模量可能会急剧发散,并且只要药物分子几乎专门结晶成低对称空间群,就需要准确的聚集体力学模量。目前,这种弹性数据在制药材料中基本缺失,有望帮助人们了解材料如何对直接压缩和片剂成型做出响应。粉末布里渊光散射(p-BLS)最近已经证明可以轻松获得与孔隙度无关的聚集体力学模量。在这项研究中,我们扩展了我们之前用于获得力学性能的 p-BLS 模型,并通过具有不同分子间相互作用拓扑结构的广泛分子固体库和先前确定的 C 对我们的方法进行了验证,从而可以对我们的结果进行基准测试。我们使用 p-BLS 确定的杨氏模量和剪切模量与使用 C 确定的 Voigt 平均杨氏模量和剪切模量具有很强的相关性,偏差有限(即接近 1:1 的关系)。通过后续的可压性研究,我们根据我们的 p-BLS 研究和表观弹性各向异性的结果引入了基于可压性行为的初步分类。随着进一步的发展,这种方法代表了一种强大而新颖的方法,可以在早期开发阶段潜在地识别具有最佳可压性的材料。