Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa, 52242, USA.
Pharm Res. 2019 Aug 19;36(10):150. doi: 10.1007/s11095-019-2681-9.
The unconventional tabletability of the indomethacin polymorphs - α and γ - are investigated from a topological and mechanical perspective using powder Brillouin light scattering (p-BLS) to identify the specific structure-performance relationship in these materials.
Indomethacin (γ-form) was purchased and used to prepare the α polymorph. Powder X-ray diffraction was used to confirm phase identity, while p-BLS was used to obtain the mechanical properties. Energy frameworks were determined with Crystal Explorer to visualize the interaction topologies. Using a Carver press and a stress-strain analyzer, the tableting performance of each polymorph was determined.
Polymorph-specific acoustic frequency distributions were observed with distinct, zero-porosity, aggregate elastic moduli determined. The p-BLS spectra for α-indomethacin display a population of low-velocity shear modes, indicating a direction of facilitated shear. This improves slip-mediated plasticity and tabletability. Our p-BLS spectra experimentally indicates that a low-energy slip system is available to α-indomethacin which supports ours and previous energy framework calculations. Despite a 2d-layered crystal motif favorable for shear deformation, the γ-form displays a higher shear modulus that is supported by our hydrogen-bonding analysis of γ-indomethacin.
Our experimental, mechanical data is consistent with the predicted interaction topologies and these two inputs combined permit a comprehensive, molecular understanding of polymorph-specific tabletability.
从拓扑和力学的角度,使用粉末布里渊光散射(p-BLS)研究吲哚美辛多晶型物-α和-γ的非常规可压片性,以确定这些材料中特定的结构-性能关系。
购买吲哚美辛(γ 形式)并用于制备α多晶型物。粉末 X 射线衍射用于确认相的同一性,而 p-BLS 用于获得机械性能。使用 Crystal Explorer 确定能量框架以可视化相互作用拓扑。使用 Carver 压片机和应力应变分析仪,确定每种多晶型物的压片性能。
观察到多晶型特异性声频分布,确定了具有独特、零孔隙率的聚合弹性模量。α-吲哚美辛的 p-BLS 光谱显示出存在低速度剪切模式的种群,表明存在促进剪切的方向。这改善了滑动介导的塑性和可压片性。我们的 p-BLS 光谱实验表明,α-吲哚美辛存在可用的低能量滑动系统,这支持了我们和以前的能量框架计算。尽管 2d 层状晶体图案有利于剪切变形,但γ形式显示出更高的剪切模量,这得到了我们对 γ-吲哚美辛的氢键分析的支持。
我们的实验力学数据与预测的相互作用拓扑一致,这两个输入结合起来,可以全面、分子理解多晶型特异性可压片性。