Ravera Emiliano P, Crespo Marcos J, Catalfamo Formento Paola A
1 Group of Analysis, Modeling, Processing and Clinician Implementation of Biomechanical Signals and Systems, Bioengineering and Bioinformatics Institute, CONICET-UNER, Oro Verde, Argentina.
2 Human Movement Research Laboratory, School of Engineering, National University of Entre Ríos (UNER), Oro Verde, Argentina.
Proc Inst Mech Eng H. 2018 Nov;232(11):1083-1097. doi: 10.1177/0954411918803125. Epub 2018 Oct 3.
Analysis of the human locomotor system using rigid-body musculoskeletal models has increased in the biomechanical community with the objective of studying muscle activations of different movements. Simultaneously, the finite element method has emerged as a complementary approach for analyzing the mechanical behavior of tissues. This study presents an integrative biomechanical framework for gait analysis by linking a musculoskeletal model and a subject-specific finite element model of the pelvis. To investigate its performance, a convergence study was performed and its sensitivity to the use of non-subject-specific material properties was studied. The total hip joint force estimated by the rigid musculoskeletal model and by the finite element model showed good agreement, suggesting that the integrative approach estimates adequately (in shape and magnitude) the hip total contact force. Previous studies found movements of up to 1.4 mm in the anterior-posterior direction, for single leg stance. These results are comparable with the displacement values found in this study: 0-0.5 mm in the sagittal axis. Maximum von Mises stress values of approximately 17 MPa were found in the pelvic bone. Comparing this results with a previous study of our group, the new findings show that the introduction of muscular boundary conditions and the flexion-extension movement of the hip reduce the regions of high stress and distributes more uniformly the stress across the pelvic bone. Thus, it is thought that muscle force has a relevant impact in reducing stresses in pelvic bone during walking of the finite element model proposed in this study. Future work will focus on including other deformable structures, such as the femur and the tibia, and subject-specific material properties.
在生物力学领域,使用刚体肌肉骨骼模型对人体运动系统进行分析的研究日益增多,目的是研究不同运动中的肌肉激活情况。同时,有限元方法已成为分析组织力学行为的一种补充方法。本研究通过将肌肉骨骼模型与特定个体的骨盆有限元模型相结合,提出了一种用于步态分析的综合生物力学框架。为了研究其性能,进行了收敛性研究,并研究了其对使用非特定个体材料属性的敏感性。由刚性肌肉骨骼模型和有限元模型估计的全髋关节力显示出良好的一致性,这表明综合方法能够充分(在形状和大小方面)估计髋关节的总接触力。先前的研究发现,单腿站立时前后方向的运动可达1.4毫米。这些结果与本研究中发现的位移值相当:矢状轴上为0 - 0.5毫米。在骨盆骨中发现的最大冯·米塞斯应力值约为17兆帕。将这些结果与我们小组之前的一项研究进行比较,新的发现表明,肌肉边界条件的引入以及髋关节的屈伸运动会减少高应力区域,并使应力在骨盆骨上更均匀地分布。因此,据认为在本研究提出的有限元模型行走过程中,肌肉力对降低骨盆骨应力具有重要影响。未来的工作将集中于纳入其他可变形结构,如股骨和胫骨,以及特定个体的材料属性。