Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
Thorac Cancer. 2018 Dec;9(12):1680-1686. doi: 10.1111/1759-7714.12881. Epub 2018 Oct 3.
Non-small cell lung cancer (NSCLC) with different EGFR mutation types shows distinct sensitivity to tyrosine kinase inhibitors (TKIs). This study developed a patho-clinical profile-based prediction model of TKI-sensitive EGFR mutations.
The records of 1121 Chinese patients diagnosed with NSCLC from November 2008 to October 2014 (the development set) were reviewed. Multivariate logistic regression was conducted to identify any association between potential predictors and the classic sensitive EGFR mutations (exon 19 deletion and exon 21 L858R point mutation). A prediction index was created by assigning weighted scores to each factor proportional to a regression coefficient. Validation was made in an independent cohort consisting of 864 patients who were consecutively enrolled between November 2014 and January 2017 (the validation set).
Seven independent predictors were identified: gender (female vs. male), adenocarcinoma (yes vs. no), smoking history (no vs. yes), N stage (N+ vs. N0), M stage (M1 vs. M0), brain metastasis (yes vs. no), and elevated Cyfra 21-1 (no vs. yes). Each was assigned a number of points. In the validation set, the area under curve of the prediction index appeared as 0.698 (95% confidence interval 0.663-0.733). The sensitivity, specificity, positive and negative predictive values, and concordance were 95.0%, 32.3%, 61.4%, 85.1%, and 65.6%, respectively.
We developed a patho-clinical profile-based model for predicting TKI-sensitive EGFR mutations. Our model may represent a noninvasive, economical choice for clinicians to inform TKI therapy.
不同表皮生长因子受体(EGFR)突变类型的非小细胞肺癌(NSCLC)对酪氨酸激酶抑制剂(TKI)的敏感性不同。本研究建立了一种基于病理临床特征的 TKI 敏感型 EGFR 突变预测模型。
回顾了 2008 年 11 月至 2014 年 10 月期间 1121 例中国 NSCLC 患者的病历(开发集)。采用多变量逻辑回归分析潜在预测因素与经典敏感型 EGFR 突变(外显子 19 缺失和外显子 21 L858R 点突变)之间的相关性。通过为每个因素分配与回归系数成比例的加权分数来创建预测指数。在 2014 年 11 月至 2017 年 1 月期间连续入组的 864 例患者的独立队列(验证集)中进行验证。
确定了 7 个独立的预测因素:性别(女性与男性)、腺癌(是与否)、吸烟史(否与是)、N 分期(N+与 N0)、M 分期(M1 与 M0)、脑转移(是与否)和 Cyfra 21-1 升高(否与是)。每个因素都被赋予一定的分数。在验证集中,预测指数的曲线下面积为 0.698(95%置信区间 0.663-0.733)。敏感性、特异性、阳性预测值、阴性预测值和一致性分别为 95.0%、32.3%、61.4%、85.1%和 65.6%。
我们建立了一种基于病理临床特征的预测 TKI 敏感型 EGFR 突变的模型。我们的模型可能为临床医生提供一种非侵入性、经济的选择,以告知 TKI 治疗。