Suppr超能文献

通过逻辑回归预测非小细胞肺癌(NSCLC)患者的表皮生长因子受体(EGFR)突变状态:一种纳入临床特征、计算机断层扫描(CT)成像特征和肿瘤标志物水平的模型。

Predicting epidermal growth factor receptor (EGFR) mutation status in non-small cell lung cancer (NSCLC) patients through logistic regression: a model incorporating clinical characteristics, computed tomography (CT) imaging features, and tumor marker levels.

作者信息

Hao Jimin, Liu Man, Zhou Zhigang, Zhao Chunling, Dai Liping, Ouyang Songyun

机构信息

Department of Respiratory and Sleep Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China.

Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, Henan, China.

出版信息

PeerJ. 2024 Dec 3;12:e18618. doi: 10.7717/peerj.18618. eCollection 2024.

Abstract

BACKGROUND

Approximately 60% of Asian populations with non-small cell lung cancer (NSCLC) harbor epidermal growth factor receptor (EGFR) gene mutations, marking it as a pivotal target for genotype-directed therapies. Currently, determining EGFR mutation status relies on DNA sequencing of histological or cytological specimens. This study presents a predictive model integrating clinical parameters, computed tomography (CT) characteristics, and serum tumor markers to forecast EGFR mutation status in NSCLC patients.

METHODS

Retrospective data collection was conducted on NSCLC patients diagnosed between January 2018 and June 2019 at the First Affiliated Hospital of Zhengzhou University, with available molecular pathology results. Clinical information, CT imaging features, and serum tumor marker levels were compiled. Four distinct models were employed in constructing the diagnostic model. Model diagnostic efficacy was assessed through receiver operating characteristic (ROC) area under the curve (AUC) values and calibration curves. DeLong's test was administered to validate model robustness.

RESULTS

Our study encompassed 748 participants. Logistic regression modeling, trained with the aforementioned variables, demonstrated remarkable predictive capability, achieving an AUC of 0.805 (95% confidence interval (CI) [0.766-0.844]) in the primary cohort and 0.753 (95% CI [0.687-0.818]) in the validation cohort. Calibration plots suggested a favorable fit of the model to the data.

CONCLUSIONS

The developed logistic regression model emerges as a promising tool for forecasting EGFR mutation status. It holds potential to aid clinicians in more precisely identifying patients likely to benefit from EGFR molecular testing and facilitating targeted therapy decision-making, particularly in scenarios where molecular testing is impractical or inaccessible.

摘要

背景

在亚洲非小细胞肺癌(NSCLC)患者中,约60%携带表皮生长因子受体(EGFR)基因突变,这使其成为基因型导向治疗的关键靶点。目前,确定EGFR突变状态依赖于组织学或细胞学标本的DNA测序。本研究提出了一种整合临床参数、计算机断层扫描(CT)特征和血清肿瘤标志物的预测模型,以预测NSCLC患者的EGFR突变状态。

方法

对2018年1月至2019年6月在郑州大学第一附属医院确诊且有可用分子病理学结果的NSCLC患者进行回顾性数据收集。收集临床信息、CT影像特征和血清肿瘤标志物水平。构建诊断模型时采用了四种不同的模型。通过受试者操作特征(ROC)曲线下面积(AUC)值和校准曲线评估模型诊断效能。采用德龙检验验证模型稳健性。

结果

我们的研究纳入了748名参与者。使用上述变量训练的逻辑回归模型显示出显著的预测能力,在主要队列中AUC为0.805(95%置信区间(CI)[0.766 - 0.844]),在验证队列中为0.753(95%CI[0.687 - 0.818])。校准图表明模型与数据拟合良好。

结论

所开发的逻辑回归模型是预测EGFR突变状态的一种有前景的工具。它有可能帮助临床医生更精确地识别可能从EGFR分子检测中获益的患者,并促进靶向治疗决策,特别是在分子检测不实用或无法进行的情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a614/11623057/c258fd19fafe/peerj-12-18618-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验