Suppr超能文献

半校准光度立体视觉

Semi-Calibrated Photometric Stereo.

作者信息

Cho Donghyeon, Matsushita Yasuyuki, Tai Yu-Wing, Kweon In So

出版信息

IEEE Trans Pattern Anal Mach Intell. 2020 Jan;42(1):232-245. doi: 10.1109/TPAMI.2018.2873295. Epub 2018 Oct 1.

Abstract

While conventional calibrated photometric stereo methods assume that light intensities and sensor exposures are known or unknown but identical across observed images, this assumption easily breaks down in practical settings due to individual light bulb's characteristics and limited control over sensors. This paper studies the effect of unknown and possibly non-uniform light intensities and sensor exposures among observed images on the shape recovery based on photometric stereo. This leads to the development of a "semi-calibrated" photometric stereo method, where the light directions are known but light intensities (and sensor exposures) are unknown. We show that the semi-calibrated photometric stereo becomes a bilinear problem, whose general form is difficult to solve, but in the photometric stereo context, there exists a unique solution for the surface normal and light intensities (or sensor exposures). We further show that there exists a linear solution method for the problem, and develop efficient and stable solution methods. The semi-calibrated photometric stereo is advantageous over conventional calibrated photometric stereo in accurate determination of surface normal, because it relaxes the assumption of known light intensity ratios/sensor exposures. The experimental results show superior accuracy of the semi-calibrated photometric stereo in comparison to conventional methods in practical settings.

摘要

虽然传统的校准光度立体方法假定光强度和传感器曝光是已知的,或者虽然未知但在所有观测图像中是相同的,但由于单个灯泡的特性以及对传感器的控制有限,这一假设在实际场景中很容易失效。本文研究了观测图像之间未知且可能不均匀的光强度和传感器曝光对基于光度立体的形状恢复的影响。这导致了一种“半校准”光度立体方法的发展,其中光方向是已知的,但光强度(和传感器曝光)是未知的。我们表明,半校准光度立体变成了一个双线性问题,其一般形式难以求解,但在光度立体的背景下,对于表面法线和光强度(或传感器曝光)存在唯一解。我们进一步表明,该问题存在一种线性求解方法,并开发了高效且稳定的求解方法。半校准光度立体在准确确定表面法线方面优于传统的校准光度立体,因为它放宽了已知光强度比/传感器曝光的假设。实验结果表明,在实际场景中,半校准光度立体与传统方法相比具有更高的精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验