Suppr超能文献

基于决策树的深度神经网络初始化

Deep Neural Network Initialization With Decision Trees.

作者信息

Humbird Kelli D, Peterson J Luc, Mcclarren Ryan G

出版信息

IEEE Trans Neural Netw Learn Syst. 2019 May;30(5):1286-1295. doi: 10.1109/TNNLS.2018.2869694. Epub 2018 Oct 1.

Abstract

In this paper, a novel, automated process for constructing and initializing deep feedforward neural networks based on decision trees is presented. The proposed algorithm maps a collection of decision trees trained on the data into a collection of initialized neural networks with the structures of the networks determined by the structures of the trees. The tree-informed initialization acts as a warm-start to the neural network training process, resulting in efficiently trained, accurate networks. These models, referred to as "deep jointly informed neural networks" (DJINN), demonstrate high predictive performance for a variety of regression and classification data sets and display comparable performance to Bayesian hyperparameter optimization at a lower computational cost. By combining the user-friendly features of decision tree models with the flexibility and scalability of deep neural networks, DJINN is an attractive algorithm for training predictive models on a wide range of complex data sets.

摘要

本文提出了一种基于决策树构建和初始化深度前馈神经网络的新颖自动化过程。所提出的算法将在数据上训练的决策树集合映射到初始化神经网络集合,网络结构由树的结构决定。基于树的初始化作为神经网络训练过程的热启动,从而得到训练高效且准确的网络。这些模型被称为“深度联合信息神经网络”(DJINN),在各种回归和分类数据集上展现出高预测性能,并且以较低的计算成本显示出与贝叶斯超参数优化相当的性能。通过将决策树模型的用户友好特性与深度神经网络的灵活性和可扩展性相结合,DJINN是一种用于在广泛复杂数据集上训练预测模型的有吸引力的算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验