IEEE J Biomed Health Inform. 2019 Jul;23(4):1784-1793. doi: 10.1109/JBHI.2018.2872834. Epub 2018 Oct 1.
The study of joint kinematics and dynamics has broad clinical applications, including the identification of pathological motions or compensation strategies and the analysis of dynamic stability. High-end motion capture systems, however, are expensive and require dedicated camera spaces with lengthy setup and data processing commitments. Depth cameras, such as the Microsoft Kinect, provide an inexpensive, marker-free alternative at the sacrifice of joint-position accuracy. In this work, we present a fast framework for adding biomechanical constraints to the joint estimates provided by a depth camera system. We also present a new model for the lower lumbar joint angle. We validate key joint position, angle, and velocity measurements against a gold standard active motion-capture system on ten healthy subjects performing sit to stand (STS). Our method showed significant improvement in mean absolute error and intraclass correlation coefficients for the recovered joint angles and position-based metrics. These improvements suggest that depth cameras can provide an accurate and clinically viable method of rapidly assessing the kinematics and kinetics of the STS action, providing data for further analysis using biomechanical or machine learning methods.
关节运动学和动力学的研究具有广泛的临床应用,包括识别病理性运动或补偿策略以及分析动态稳定性。然而,高端运动捕捉系统价格昂贵,并且需要专用的摄像空间,设置和数据处理时间长。深度摄像机(如 Microsoft Kinect)提供了一种廉价、无标记的替代方案,但牺牲了关节位置的准确性。在这项工作中,我们提出了一种快速框架,为深度摄像系统提供的关节估计添加生物力学约束。我们还提出了一种新的下腰椎关节角度模型。我们针对十个进行坐站(STS)的健康受试者的主动运动捕捉系统的金标准,验证了关键关节位置、角度和速度测量值。我们的方法在恢复的关节角度和基于位置的指标的均方根误差和组内相关系数方面都有显著的改善。这些改进表明,深度摄像机可以提供一种准确且临床可行的方法,快速评估 STS 动作的运动学和动力学,为使用生物力学或机器学习方法进行进一步分析提供数据。