Keller Anastasia V, Torres-Espin Abel, Peterson Thomas A, Booker Jacqueline, O'Neill Conor, Lotz Jeffrey C, Bailey Jeannie F, Ferguson Adam R, Matthew Robert P
Brain and Spinal Injury Center (BASIC), Weill Institute for Neuroscience, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States.
San Francisco Veterans Affairs Healthcare System, San Francisco, CA, United States.
Front Bioeng Biotechnol. 2022 Apr 14;10:868684. doi: 10.3389/fbioe.2022.868684. eCollection 2022.
Chronic low back pain (LBP) is a leading cause of disability and opioid prescriptions worldwide, representing a significant medical and socioeconomic problem. Clinical heterogeneity of LBP limits accurate diagnosis and precise treatment planning, culminating in poor patient outcomes. A current priority of LBP research is the development of objective, multidimensional assessment tools that subgroup LBP patients based on neurobiological pain mechanisms, to facilitate matching patients with the optimal therapies. Using unsupervised machine learning on full body biomechanics, including kinematics, dynamics, and muscle forces, captured with a marker-less depth camera, this study identified a forward-leaning sit-to-stand strategy (STS) as a discriminating movement biomarker for LBP subjects. A forward-leaning STS strategy, as opposed to a vertical rise strategy seen in the control participants, is less efficient and results in increased spinal loads. Inefficient STS with the subsequent higher spinal loading may be a biomarker of poor motor control in LBP patients as well as a potential source of the ongoing symptomology.
慢性下腰痛(LBP)是全球残疾和阿片类药物处方的主要原因,是一个重大的医学和社会经济问题。LBP的临床异质性限制了准确的诊断和精确的治疗规划,最终导致患者预后不佳。LBP研究当前的一个优先事项是开发客观的多维评估工具,根据神经生物学疼痛机制对LBP患者进行亚组划分,以便为患者匹配最佳治疗方法。本研究利用无标记深度相机捕获的包括运动学、动力学和肌肉力量在内的全身生物力学数据进行无监督机器学习,确定了前倾式从坐到站策略(STS)作为LBP受试者的一种鉴别性运动生物标志物。与对照组参与者采用的垂直起身策略相反,前倾式STS策略效率较低,会导致脊柱负荷增加。效率低下的STS以及随之而来的更高脊柱负荷可能是LBP患者运动控制不佳的生物标志物,也是持续症状的潜在来源。