Suppr超能文献

外泌体利用病毒进入机制和途径来传递α干扰素诱导的抗病毒活性。

Exosomes Exploit the Virus Entry Machinery and Pathway To Transmit Alpha Interferon-Induced Antiviral Activity.

机构信息

Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.

Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, China.

出版信息

J Virol. 2018 Nov 27;92(24). doi: 10.1128/JVI.01578-18. Print 2018 Dec 15.

Abstract

Alpha interferon (IFN-α) induces the transfer of resistance to hepatitis B virus (HBV) from liver nonparenchymal cells (LNPCs) to hepatocytes via exosomes. However, little is known about the entry machinery and pathway involved in the transmission of IFN-α-induced antiviral activity. In this study, we found that macrophage exosomes uniquely depend on T cell immunoglobulin and mucin receptor 1 (TIM-1), a hepatitis A virus (HAV) receptor, to enter hepatocytes for delivering IFN-α-induced anti-HBV activity. Moreover, two primary endocytic routes for virus infection, clathrin-mediated endocytosis (CME) and macropinocytosis, collaborate to permit exosome entry and anti-HBV activity transfer. Subsequently, lysobisphosphatidic acid (LBPA), an anionic lipid closely related to endosome penetration of virus, facilitates membrane fusion of exosomes in late endosomes/multivesicular bodies (LEs/MVBs) and the accompanying exosomal cargo uncoating. Together, our findings provide comprehensive insights into the transmission route of macrophage exosomes to efficiently deliver IFN-α-induced antiviral substances and highlight the similarities between the entry mechanisms of exosomes and virus. Our previous study showed that LNPC-derived exosomes could transmit IFN-α-induced antiviral activity to HBV replicating hepatocytes, but the concrete transmission mechanisms, which include exosome entry and exosomal cargo release, remain unclear. In this study, we found that virus entry machinery and pathway were also applied to exosome-mediated cell-to-cell antiviral activity transfer. Macrophage-derived exosomes distinctively exploit hepatitis A virus receptor for access to hepatocytes. Later, CME and macropinocytosis are utilized by exosomes, followed by exosome-endosome fusion for efficient transfer of IFN-α-induced anti-HBV activity. We believe that understanding the cellular entry pathway of exosomes will be beneficial to designing exosomes as efficient vehicles for antiviral therapy.

摘要

α干扰素(IFN-α)通过外泌体诱导来自肝非实质细胞(LNPC)的乙型肝炎病毒(HBV)耐药性转移到肝细胞。然而,对于IFN-α诱导的抗病毒活性的传递所涉及的进入机制和途径知之甚少。在这项研究中,我们发现巨噬细胞外泌体独特地依赖于 T 细胞免疫球蛋白和粘蛋白受体 1(TIM-1),即甲型肝炎病毒(HAV)受体,进入肝细胞以传递 IFN-α诱导的抗 HBV 活性。此外,两种主要的病毒感染内吞途径,网格蛋白介导的内吞作用(CME)和巨胞饮作用,协同允许外泌体进入和抗 HBV 活性转移。随后,溶酶体双磷脂酸(LBPA),一种与病毒进入内体密切相关的阴离子脂质,促进晚期内体/多泡体(LE/MVBs)中外泌体的膜融合以及伴随的外泌体货物脱壳。总之,我们的研究结果提供了对外泌体向肝细胞有效传递 IFN-α诱导的抗病毒物质的传输途径的全面了解,并强调了外泌体和病毒进入机制之间的相似性。我们之前的研究表明,来自 LNPC 的外泌体可以将 IFN-α诱导的抗病毒活性传递给 HBV 复制的肝细胞,但具体的传递机制,包括外泌体进入和外泌体货物释放,仍不清楚。在这项研究中,我们发现病毒进入机制和途径也被应用于外泌体介导的细胞间抗病毒活性转移。巨噬细胞衍生的外泌体独特地利用肝炎 A 病毒受体进入肝细胞。随后,CME 和巨胞饮作用被外泌体利用,随后是外泌体-内体融合,以有效传递 IFN-α诱导的抗 HBV 活性。我们相信,了解外泌体的细胞进入途径将有助于设计外泌体作为有效的抗病毒治疗载体。

相似文献

1
Exosomes Exploit the Virus Entry Machinery and Pathway To Transmit Alpha Interferon-Induced Antiviral Activity.
J Virol. 2018 Nov 27;92(24). doi: 10.1128/JVI.01578-18. Print 2018 Dec 15.
4
Exosomes mediate the cell-to-cell transmission of IFN-α-induced antiviral activity.
Nat Immunol. 2013 Aug;14(8):793-803. doi: 10.1038/ni.2647. Epub 2013 Jul 7.
5
Exosome mimicry by a HAVCR1-NPC1 pathway of endosomal fusion mediates hepatitis A virus infection.
Nat Microbiol. 2020 Sep;5(9):1096-1106. doi: 10.1038/s41564-020-0740-y. Epub 2020 Jun 15.
8
The Interferon-Inducible Protein Tetherin Inhibits Hepatitis B Virus Virion Secretion.
J Virol. 2015 Sep;89(18):9200-12. doi: 10.1128/JVI.00933-15. Epub 2015 Jun 24.
9
Entry of hepatitis B virus into immortalized human primary hepatocytes by clathrin-dependent endocytosis.
J Virol. 2012 Sep;86(17):9443-53. doi: 10.1128/JVI.00873-12. Epub 2012 Jun 27.
10
Hepatitis B virus entry into HepG2-NTCP cells requires clathrin-mediated endocytosis.
Cell Microbiol. 2020 Aug;22(8):e13205. doi: 10.1111/cmi.13205. Epub 2020 Apr 1.

引用本文的文献

1
Exosome in HBV infection: current concepts and future perspectives.
Front Cell Infect Microbiol. 2025 Jul 23;15:1547525. doi: 10.3389/fcimb.2025.1547525. eCollection 2025.
2
Extracellular vesicles as cancer biomarkers and drug delivery strategies in clinical settings: Advances, perspectives, and challenges.
Clinics (Sao Paulo). 2025 May 1;80:100635. doi: 10.1016/j.clinsp.2025.100635. eCollection 2025.
4
Breaking free: endocytosis and endosomal escape of extracellular vesicles.
Extracell Vesicles Circ Nucl Acids. 2023 Jun 30;4(2):283-305. doi: 10.20517/evcna.2023.26. eCollection 2023.
5
Harnessing crosstalk between extracellular vesicles and viruses for disease diagnostics and therapeutics.
Extracell Vesicles Circ Nucl Acids. 2024 Jul 7;5(3):358-370. doi: 10.20517/evcna.2024.30. eCollection 2024.
6
Extracellular Vesicles in Viral Liver Diseases.
Viruses. 2024 Nov 17;16(11):1785. doi: 10.3390/v16111785.
8
IFN-treated macrophage-derived exosomes prevents HBV-HCC migration and invasion via regulating miR-106b-3p/PCGF3/PI3K/AKT signaling axis.
Front Cell Infect Microbiol. 2024 Oct 28;14:1421195. doi: 10.3389/fcimb.2024.1421195. eCollection 2024.
9
Mechanisms of extracellular vesicle uptake and implications for the design of cancer therapeutics.
J Extracell Biol. 2024 Oct 30;3(11):e70017. doi: 10.1002/jex2.70017. eCollection 2024 Nov.
10
Strategies for Targeting Peptide-Modified Exosomes and Their Applications in the Lungs.
Int J Nanomedicine. 2024 Aug 12;19:8175-8188. doi: 10.2147/IJN.S472038. eCollection 2024.

本文引用的文献

2
Exosomes: Mechanisms of Uptake.
J Circ Biomark. 2015 Jul 17;4:7. doi: 10.5772/61186. eCollection 2015 Jan-Dec.
4
Membrane fission by dynamin: what we know and what we need to know.
EMBO J. 2016 Nov 2;35(21):2270-2284. doi: 10.15252/embj.201694613. Epub 2016 Sep 26.
5
The Late Endosome and Its Lipid BMP Act as Gateways for Efficient Cytosolic Access of the Delivery Agent dfTAT and Its Macromolecular Cargos.
Cell Chem Biol. 2016 May 19;23(5):598-607. doi: 10.1016/j.chembiol.2016.03.016. Epub 2016 May 5.
6
Mechanisms of HBV-induced hepatocellular carcinoma.
J Hepatol. 2016 Apr;64(1 Suppl):S84-S101. doi: 10.1016/j.jhep.2016.02.021.
7
Fusion of Enveloped Viruses in Endosomes.
Traffic. 2016 Jun;17(6):593-614. doi: 10.1111/tra.12389. Epub 2016 Apr 7.
8
Extracellular Vesicles Exploit Viral Entry Routes for Cargo Delivery.
Microbiol Mol Biol Rev. 2016 Mar 2;80(2):369-86. doi: 10.1128/MMBR.00063-15. Print 2016 Jun.
10
Chronic hepatitis B: Are we close to a cure?
Dig Liver Dis. 2015 Oct;47(10):836-41. doi: 10.1016/j.dld.2015.05.019. Epub 2015 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验