Suppr超能文献

一种人核糖核酸酶变体和 ERK 通路抑制剂对癌细胞表现出高度协同的毒性。

A Human Ribonuclease Variant and ERK-Pathway Inhibitors Exhibit Highly Synergistic Toxicity for Cancer Cells.

机构信息

Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin.

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts.

出版信息

Mol Cancer Ther. 2018 Dec;17(12):2622-2632. doi: 10.1158/1535-7163.MCT-18-0724. Epub 2018 Oct 3.

Abstract

Pancreatic-type ribonucleases (ptRNases) are prevalent secretory enzymes that catalyze the cleavage of RNA. Ribonuclease inhibitor (RI) is a cytosolic protein that has femtomolar affinity for ptRNases, affording protection from the toxic catalytic activity of ptRNases, which can invade human cells. A human ptRNase variant that is resistant to inhibition by RI is a cytotoxin that is undergoing a clinical trial as a cancer chemotherapeutic agent. We find that the ptRNase and protein kinases in the ERK pathway exhibit strongly synergistic toxicity toward lung cancer cells (including a KRAS variant) and melanoma cells (including BRAF variants). The synergism arises from inhibiting the phosphorylation of RI and thereby diminishing its affinity for the ptRNase. These findings link seemingly unrelated cellular processes, and suggest that the use of a kinase inhibitor to unleash a cytotoxic enzyme could lead to beneficial manifestations in the clinic.

摘要

胰腺核糖核酸酶(ptRNases)是普遍存在的分泌酶,可催化 RNA 的切割。核糖核酸酶抑制剂(RI)是一种细胞溶质蛋白,对 ptRNases 具有飞摩尔亲和力,可防止 ptRNases 的毒性催化活性侵入人体细胞。一种对 RI 抑制具有抗性的人源 ptRNase 变体是一种细胞毒素,正在作为癌症化疗药物进行临床试验。我们发现,内质网中的 ptRNase 和蛋白激酶ERK 途径对肺癌细胞(包括 KRAS 变体)和黑色素瘤细胞(包括 BRAF 变体)表现出强烈的协同毒性。协同作用源于抑制 RI 的磷酸化,从而降低其与 ptRNase 的亲和力。这些发现将看似不相关的细胞过程联系起来,并表明使用激酶抑制剂释放细胞毒性酶可能会在临床上产生有益的表现。

相似文献

1
A Human Ribonuclease Variant and ERK-Pathway Inhibitors Exhibit Highly Synergistic Toxicity for Cancer Cells.
Mol Cancer Ther. 2018 Dec;17(12):2622-2632. doi: 10.1158/1535-7163.MCT-18-0724. Epub 2018 Oct 3.
2
Resistance to MEK inhibitors: should we co-target upstream?
Sci Signal. 2011 Mar 29;4(166):pe16. doi: 10.1126/scisignal.2001948.
4
Clinical Acquired Resistance to RAF Inhibitor Combinations in BRAF-Mutant Colorectal Cancer through MAPK Pathway Alterations.
Cancer Discov. 2015 Apr;5(4):358-67. doi: 10.1158/2159-8290.CD-14-1518. Epub 2015 Feb 11.
5
Aberrant modulation of ribosomal protein S6 phosphorylation confers acquired resistance to MAPK pathway inhibitors in BRAF-mutant melanoma.
Acta Pharmacol Sin. 2019 Feb;40(2):268-278. doi: 10.1038/s41401-018-0020-z. Epub 2018 May 18.
6
Therapeutic potential of combined BRAF/MEK blockade in BRAF-wild type preclinical tumor models.
J Exp Clin Cancer Res. 2018 Jul 9;37(1):140. doi: 10.1186/s13046-018-0820-5.

引用本文的文献

1
Palladium-Protein Oxidative Addition Complexes by Amine-Selective Acylation.
J Am Chem Soc. 2020 Dec 23;142(51):21237-21242. doi: 10.1021/jacs.0c09180. Epub 2020 Dec 15.
2
Modifying Adaptive Therapy to Enhance Competitive Suppression.
Cancers (Basel). 2020 Nov 28;12(12):3556. doi: 10.3390/cancers12123556.
3
Surveillance of Tumour Development: The Relationship Between Tumour-Associated RNAs and Ribonucleases.
Front Pharmacol. 2019 Sep 13;10:1019. doi: 10.3389/fphar.2019.01019. eCollection 2019.
4
Phenotype of ribonuclease 1 deficiency in mice.
RNA. 2019 Aug;25(8):921-934. doi: 10.1261/rna.070433.119. Epub 2019 May 3.
5
Esterification Delivers a Functional Enzyme into a Human Cell.
ACS Chem Biol. 2019 Apr 19;14(4):599-602. doi: 10.1021/acschembio.9b00033. Epub 2019 Mar 11.

本文引用的文献

1
Human angiogenin is a potent cytotoxin in the absence of ribonuclease inhibitor.
RNA. 2018 Aug;24(8):1018-1027. doi: 10.1261/rna.065516.117. Epub 2018 May 10.
2
Cancer drug addiction is relayed by an ERK2-dependent phenotype switch.
Nature. 2017 Oct 12;550(7675):270-274. doi: 10.1038/nature24037. Epub 2017 Oct 4.
3
Adjuvant Dabrafenib plus Trametinib in Stage III BRAF-Mutated Melanoma.
N Engl J Med. 2017 Nov 9;377(19):1813-1823. doi: 10.1056/NEJMoa1708539. Epub 2017 Sep 10.
5
Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes.
Gigascience. 2017 Feb 1;6(2):1-11. doi: 10.1093/gigascience/giw015.
6
RNA biology of angiogenin: Current state and perspectives.
RNA Biol. 2017 Feb;14(2):171-178. doi: 10.1080/15476286.2016.1272746.
7
Molecular basis for the autonomous promotion of cell proliferation by angiogenin.
Nucleic Acids Res. 2017 Jan 25;45(2):818-831. doi: 10.1093/nar/gkw1192. Epub 2016 Dec 2.
8
Knockout of the Ribonuclease Inhibitor Gene Leaves Human Cells Vulnerable to Secretory Ribonucleases.
Biochemistry. 2016 Nov 22;55(46):6359-6362. doi: 10.1021/acs.biochem.6b01003. Epub 2016 Nov 8.
9
Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design.
Nat Rev Drug Discov. 2016 Nov;15(11):771-785. doi: 10.1038/nrd.2016.139. Epub 2016 Jul 29.
10
Combine and conquer: challenges for targeted therapy combinations in early phase trials.
Nat Rev Clin Oncol. 2017 Jan;14(1):57-66. doi: 10.1038/nrclinonc.2016.96. Epub 2016 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验