Suppr超能文献

二羟甘露醇诱导肿瘤细胞中依赖复制的 DNA 损伤,这些损伤可被同源重组优先修复。

Dianhydrogalactitol induces replication-dependent DNA damage in tumor cells preferentially resolved by homologous recombination.

机构信息

Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada.

Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.

出版信息

Cell Death Dis. 2018 Oct 3;9(10):1016. doi: 10.1038/s41419-018-1069-9.

Abstract

1,2:5,6-Dianhydrogalactitol (DAG) is a bifunctional DNA-targeting agent causing N-guanine alkylation and inter-strand DNA crosslinks currently in clinical trial for treatment of glioblastoma. While preclinical studies and clinical trials have demonstrated antitumor activity of DAG in a variety of malignancies, understanding the molecular mechanisms underlying DAG-induced cytotoxicity is essential for proper clinical qualification. Using non-small cell lung cancer (NSCLC) as a model system, we show that DAG-induced cytotoxicity materializes when cells enter S phase with unrepaired N-guanine DNA crosslinks. In S phase, DAG-mediated DNA crosslink lesions translated into replication-dependent DNA double-strand breaks (DSBs) that subsequently triggered irreversible cell cycle arrest and loss of viability. DAG-treated NSCLC cells attempt to repair the DSBs by homologous recombination (HR) and inhibition of the HR repair pathway sensitized NSCLC cells to DAG-induced DNA damage. Accordingly, our work describes a molecular mechanism behind N-guanine crosslink-induced cytotoxicity in cancer cells and provides a rationale for using DAG analogs to treat HR-deficient tumors.

摘要

1,2:5,6-脱水山梨糖醇(DAG)是一种双功能 DNA 靶向试剂,可导致 N-鸟嘌呤烷基化和链间 DNA 交联,目前正在临床试验中用于治疗胶质母细胞瘤。虽然临床前研究和临床试验已经证明 DAG 在多种恶性肿瘤中具有抗肿瘤活性,但了解 DAG 诱导细胞毒性的分子机制对于正确的临床鉴定至关重要。我们使用非小细胞肺癌(NSCLC)作为模型系统,表明当细胞进入 S 期且未修复 N-鸟嘌呤 DNA 交联时,DAG 诱导的细胞毒性就会显现。在 S 期,DAG 介导的 DNA 交联损伤转化为复制依赖性 DNA 双链断裂(DSB),随后引发不可逆的细胞周期停滞和活力丧失。DAG 处理的 NSCLC 细胞试图通过同源重组(HR)修复 DSB,抑制 HR 修复途径使 NSCLC 细胞对 DAG 诱导的 DNA 损伤敏感。因此,我们的工作描述了癌症细胞中 N-鸟嘌呤交联诱导细胞毒性的分子机制,并为使用 DAG 类似物治疗 HR 缺陷型肿瘤提供了理论依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0520/6170372/7af679d910a4/41419_2018_1069_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验