Sun Jiamin, Yin Yanxue, Han Mingming, Yang Zai-Xing, Lan Changyong, Liu Lizhe, Wang Ying, Han Ning, Shen Lifan, Wu Xinglong, Ho Johnny C
Center of Nanoelectronics and School of Microelectronics , Shandong University , Jinan 250100 , P. R. China.
Shenzhen Research Institute of Shandong University , Shenzhen 518057 , P. R. China.
ACS Nano. 2018 Oct 23;12(10):10410-10418. doi: 10.1021/acsnano.8b05947. Epub 2018 Oct 9.
As an important semiconductor nanomaterial, InP nanowires (NWs) grown with a typical vapor-liquid-solid mechanism are still restricted from their low electron mobility for practical applications. Here, nonpolar-oriented defect-free wurtzite InP NWs with electron mobility of as high as 2000 cm V s can be successfully synthesized via Pd-catalyzed vapor-solid-solid growth. Specifically, PdIn catalyst particles are involved and found to expose their PdIn{210} planes at the InP nucleation frontier due to their minimal lattice mismatch with nonpolar InP{2̅110} and {1̅100} planes. This appropriate lattice registration would then minimize the overall free energy and enable the highly crystalline InP NW growth epitaxially along the nonpolar directions. Because of the minimized crystal defects, the record-high electron mobility of InP NWs ( i.e., 2000 cm V s at an electron concentration of 10 cm) results, being close to the theoretical limit of their bulk counterparts. Furthermore, once the top-gated device geometry is employed, the device subthreshold slopes can be impressively reduced down to 91 mV dec at room temperature. In addition, these NWs exhibit a high photoresponsivity of 10 A W with fast rise and decay times of 0.89 and 0.82 s, respectively, in photodetection. All these results evidently demonstrate the promise of nonpolar-oriented InP NWs for next-generation electronics and optoelectronics.
作为一种重要的半导体纳米材料,通过典型的气-液-固机制生长的磷化铟纳米线(NWs)在实际应用中仍因其低电子迁移率而受到限制。在此,通过钯催化的气-固-固生长可以成功合成电子迁移率高达2000 cm² V⁻¹ s⁻¹的非极性取向无缺陷纤锌矿型磷化铟纳米线。具体而言,钯铟催化剂颗粒参与其中,并且由于它们与非极性磷化铟{2̅110}和{1̅100}平面的晶格失配最小,发现在磷化铟成核前沿暴露其钯铟{210}平面。这种适当的晶格配准随后将使总自由能最小化,并使高度结晶性的磷化铟纳米线沿非极性方向外延生长。由于晶体缺陷最小化,磷化铟纳米线实现了创纪录的高电子迁移率(即在电子浓度为10¹⁷ cm⁻³时为2000 cm² V⁻¹ s⁻¹),接近其体相材料的理论极限。此外,一旦采用顶栅器件结构,在室温下器件的亚阈值斜率可显著降低至91 mV dec⁻¹。此外,这些纳米线在光电探测中表现出10⁻¹ A W⁻¹的高光响应性,上升和衰减时间分别为0.89和0.82 μs。所有这些结果清楚地证明了非极性取向的磷化铟纳米线在下一代电子学和光电子学方面的潜力。