Biostatistics and Computing, Yonsei University Graduate School, Seoul, Korea.
Department of Applied Statistics, University of Suwon, Suwon, Korea.
BMC Med Res Methodol. 2018 Oct 1;18(1):98. doi: 10.1186/s12874-018-0558-y.
In the presence of an intermediate clinical event, the analysis of time-to-event survival data by conventional approaches, such as the log-rank test, can result in biased results due to the length-biased characteristics.
In the present study, we extend the studies of Finkelstein and Nam & Zelen to propose new methods for handling interval-censored data with an intermediate clinical event using multiple imputation. The proposed methods consider two types of weights in multiple imputation: 1) uniform weight and 2) the weighted weight methods.
Extensive simulation studies were performed to compare the proposed tests with existing methods regarding type I error and power. Our simulation results demonstrate that for all scenarios, our proposed methods exhibit a superior performance compared with the stratified log-rank and the log-rank tests. Data from a randomized clinical study to test the efficacy of sorafenib/sunitinib vs. sunitinib/sorafenib to treat metastatic renal cell carcinoma were analyzed under the proposed methods to illustrate their performance on real data.
In the absence of intensive iterations, our proposed methods show a superior performance compared with the stratified log-rank and the log-rank test regarding type I error and power.
在存在中间临床事件的情况下,传统方法(如对数秩检验)对生存时间数据的分析可能会由于长度偏倚的特征而导致有偏的结果。
在本研究中,我们扩展了 Finkelstein 和 Nam & Zelen 的研究,提出了使用多重插补处理带有中间临床事件的区间 censored 数据的新方法。所提出的方法在多重插补中考虑了两种权重:1)均匀权重和 2)加权权重方法。
进行了广泛的模拟研究,以比较提出的检验与现有方法在Ⅰ类错误和功效方面的性能。我们的模拟结果表明,在所研究的所有场景中,与分层对数秩检验和对数秩检验相比,我们提出的方法表现出优越的性能。对一项旨在检验索拉非尼/舒尼替尼与舒尼替尼/索拉非尼治疗转移性肾细胞癌疗效的随机临床研究的数据进行了分析,以说明这些方法在真实数据中的性能。
在没有密集迭代的情况下,与分层对数秩检验和对数秩检验相比,我们提出的方法在Ⅰ类错误和功效方面表现出优越的性能。