Suppr超能文献

比较存在中间临床事件时,区间删失数据的生存函数。

Comparing survival functions with interval-censored data in the presence of an intermediate clinical event.

机构信息

Biostatistics and Computing, Yonsei University Graduate School, Seoul, Korea.

Department of Applied Statistics, University of Suwon, Suwon, Korea.

出版信息

BMC Med Res Methodol. 2018 Oct 1;18(1):98. doi: 10.1186/s12874-018-0558-y.

Abstract

BACKGROUND

In the presence of an intermediate clinical event, the analysis of time-to-event survival data by conventional approaches, such as the log-rank test, can result in biased results due to the length-biased characteristics.

METHODS

In the present study, we extend the studies of Finkelstein and Nam & Zelen to propose new methods for handling interval-censored data with an intermediate clinical event using multiple imputation. The proposed methods consider two types of weights in multiple imputation: 1) uniform weight and 2) the weighted weight methods.

RESULTS

Extensive simulation studies were performed to compare the proposed tests with existing methods regarding type I error and power. Our simulation results demonstrate that for all scenarios, our proposed methods exhibit a superior performance compared with the stratified log-rank and the log-rank tests. Data from a randomized clinical study to test the efficacy of sorafenib/sunitinib vs. sunitinib/sorafenib to treat metastatic renal cell carcinoma were analyzed under the proposed methods to illustrate their performance on real data.

CONCLUSIONS

In the absence of intensive iterations, our proposed methods show a superior performance compared with the stratified log-rank and the log-rank test regarding type I error and power.

摘要

背景

在存在中间临床事件的情况下,传统方法(如对数秩检验)对生存时间数据的分析可能会由于长度偏倚的特征而导致有偏的结果。

方法

在本研究中,我们扩展了 Finkelstein 和 Nam & Zelen 的研究,提出了使用多重插补处理带有中间临床事件的区间 censored 数据的新方法。所提出的方法在多重插补中考虑了两种权重:1)均匀权重和 2)加权权重方法。

结果

进行了广泛的模拟研究,以比较提出的检验与现有方法在Ⅰ类错误和功效方面的性能。我们的模拟结果表明,在所研究的所有场景中,与分层对数秩检验和对数秩检验相比,我们提出的方法表现出优越的性能。对一项旨在检验索拉非尼/舒尼替尼与舒尼替尼/索拉非尼治疗转移性肾细胞癌疗效的随机临床研究的数据进行了分析,以说明这些方法在真实数据中的性能。

结论

在没有密集迭代的情况下,与分层对数秩检验和对数秩检验相比,我们提出的方法在Ⅰ类错误和功效方面表现出优越的性能。

相似文献

1
Comparing survival functions with interval-censored data in the presence of an intermediate clinical event.
BMC Med Res Methodol. 2018 Oct 1;18(1):98. doi: 10.1186/s12874-018-0558-y.
6
Weighted logrank tests for interval censored data when assessment times depend on treatment.
Stat Med. 2012 Dec 10;31(28):3760-72. doi: 10.1002/sim.5447. Epub 2012 Jul 11.
7
Early Tumour Shrinkage: A Tool for the Detection of Early Clinical Activity in Metastatic Renal Cell Carcinoma.
Eur Urol. 2016 Dec;70(6):1006-1015. doi: 10.1016/j.eururo.2016.05.010. Epub 2016 May 26.
9
Partitioned log-rank tests for the overall homogeneity of hazard rate functions.
Lifetime Data Anal. 2017 Jul;23(3):400-425. doi: 10.1007/s10985-016-9365-0. Epub 2016 Mar 19.
10
Second-line treatment outcomes after first-line sunitinib therapy in metastatic renal cell carcinoma.
Clin Genitourin Cancer. 2012 Dec;10(4):256-61. doi: 10.1016/j.clgc.2012.04.006. Epub 2012 Jun 7.

引用本文的文献

1
Randomized two-stage optimal design for interval-censored data.
J Biopharm Stat. 2022 Mar;32(2):298-307. doi: 10.1080/10543406.2021.2009499. Epub 2021 Dec 10.

本文引用的文献

4
Multiple imputation for interval censored data with auxiliary variables.
Stat Med. 2007 Feb 20;26(4):769-81. doi: 10.1002/sim.2581.
5
Generalized log-rank test for mixed interval-censored failure time data.
Stat Med. 2004 May 30;23(10):1621-9. doi: 10.1002/sim.1746.
6
Aggregate data meta-analysis with time-to-event outcomes.
Stat Med. 2002 Nov 30;21(22):3337-51. doi: 10.1002/sim.1303.
7
Estimation in the cox proportional hazards model with left-truncated and interval-censored data.
Biometrics. 2002 Mar;58(1):64-70. doi: 10.1111/j.0006-341x.2002.00064.x.
8
Comparing the survival of two groups with an intermediate clinical event.
Lifetime Data Anal. 2001 Mar;7(1):5-19. doi: 10.1023/a:1009609925212.
9
A multiple imputation approach to Cox regression with interval-censored data.
Biometrics. 2000 Mar;56(1):199-203. doi: 10.1111/j.0006-341x.2000.00199.x.
10
A two-sample test with interval censored data via multiple imputation.
Stat Med. 2000 Jan 15;19(1):1-11. doi: 10.1002/(sici)1097-0258(20000115)19:1<1::aid-sim296>3.0.co;2-q.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验