Suppr超能文献

左截断和区间删失数据的Cox比例风险模型中的估计

Estimation in the cox proportional hazards model with left-truncated and interval-censored data.

作者信息

Pan Wei, Chappell Rick

机构信息

Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis 55455, USA.

出版信息

Biometrics. 2002 Mar;58(1):64-70. doi: 10.1111/j.0006-341x.2002.00064.x.

Abstract

We show that the nonparametric maximum likelihood estimate (NPMLE) of the regression coefficient from the joint likelihood (of the regression coefficient and the baseline survival) works well for the Cox proportional hazards model with left-truncated and interval-censored data, but the NPMLE may underestimate the baseline survival. Two alternatives are also considered: first, the marginal likelihood approach by extending Satten (1996, Biometrika 83, 355-370) to truncated data, where the baseline distribution is eliminated as a nuisance parameter; and second, the monotone maximum likelihood estimate that maximizes the joint likelihood by assuming that the baseline distribution has a nondecreasing hazard function, which was originally proposed to overcome the underestimation of the survival from the NPMLE for left-truncated data without covariates (Tsai, 1988, Biometrika 75, 319-324). The bootstrap is proposed to draw inference. Simulations were conducted to assess their performance. The methods are applied to the Massachusetts Health Care Panel Study data set to compare the probabilities of losing functional independence for male and female seniors.

摘要

我们表明,对于具有左截断和区间删失数据的Cox比例风险模型,从联合似然(回归系数和基线生存的联合似然)得到的回归系数的非参数最大似然估计(NPMLE)效果良好,但NPMLE可能会低估基线生存。我们还考虑了两种替代方法:第一,通过将Satten(1996年,《生物统计学》83卷,355 - 370页)的方法扩展到截断数据来采用边际似然方法,其中基线分布作为一个讨厌的参数被消除;第二,单调最大似然估计,通过假设基线分布具有非递减风险函数来最大化联合似然,该方法最初是为克服无协变量的左截断数据的NPMLE对生存的低估而提出的(Tsai,1988年,《生物统计学》75卷,319 - 324页)。我们提出使用自助法进行推断。进行了模拟以评估它们的性能。这些方法应用于马萨诸塞州医疗保健小组研究数据集,以比较男性和女性老年人失去功能独立性的概率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验