Suppr超能文献

随机两阶段最优设计用于区间 censored 数据。

Randomized two-stage optimal design for interval-censored data.

机构信息

Department of Biostatistics, University of Florida, Gainesville, USA.

出版信息

J Biopharm Stat. 2022 Mar;32(2):298-307. doi: 10.1080/10543406.2021.2009499. Epub 2021 Dec 10.

Abstract

Interval-censored data occur in a study where the exact event time of each participant is not observed but it is known to be within a certain time interval. Multiple tests were proposed for such data, including the logrank test by Sun, the proportional hazard test by Finkelstein, and the Wilcoxon-type test by Peto and Peto. We propose sample size calculations based on these tests for a parallel one-stage or two-stage design. When the proportional hazard assumption is met, the proportional hazard test and the logrank test need smaller sample sizes than the Wilcoxon-type test, and the sample size savings are substantial. But this trend is reversed when the proportional hazard assumption does not hold, and the sample size savings using the Wilcoxon-type test are sizable. An example from a lung cancer clinical trial is used to illustrate the application of the proposed sample size calculations.

摘要

区间删失数据出现在一项研究中,其中每个参与者的确切事件时间未被观察到,但已知在某个时间间隔内。针对此类数据,已经提出了多种检验方法,包括 Sun 的对数秩检验、Finkelstein 的比例风险检验以及 Peto 和 Peto 的 Wilcoxon 型检验。我们针对平行的单阶段或两阶段设计,基于这些检验方法提出了样本量计算方法。当满足比例风险假设时,比例风险检验和对数秩检验所需的样本量小于 Wilcoxon 型检验,并且样本量节省较大。但是,当不满足比例风险假设时,这种趋势会逆转,而使用 Wilcoxon 型检验的样本量节省则较大。本文通过一个肺癌临床试验的实例说明了所提出的样本量计算方法的应用。

相似文献

1
Randomized two-stage optimal design for interval-censored data.
J Biopharm Stat. 2022 Mar;32(2):298-307. doi: 10.1080/10543406.2021.2009499. Epub 2021 Dec 10.
2
Sample size calculation for the combination test under nonproportional hazards.
Biom J. 2023 Apr;65(4):e2100403. doi: 10.1002/bimj.202100403. Epub 2023 Feb 15.
6
Comparison of survival distributions in clinical trials: A practical guidance.
Clin Trials. 2020 Oct;17(5):507-521. doi: 10.1177/1740774520928614. Epub 2020 Jun 27.
9
Simulation study and implementation of the tests based on weighted Turnbull's estimators for interval-censored data.
Stat Med. 2001 Jan 30;20(2):281-94. doi: 10.1002/1097-0258(20010130)20:2<281::aid-sim652>3.0.co;2-0.
10
Power and sample size calculations for interval-censored survival analysis.
Stat Med. 2016 Apr 15;35(8):1390-400. doi: 10.1002/sim.6832. Epub 2015 Dec 7.

引用本文的文献

1
Disease progression from mild cognitive impairment to dementia for patients with Alzheimer's disease or Lewy body pathology.
J Alzheimers Dis Rep. 2025 Jul 10;9:25424823251359541. doi: 10.1177/25424823251359541. eCollection 2025 Jan-Dec.
3
Promising zone two-stage design for a single-arm study with binary outcome.
Stat Methods Med Res. 2023 Jun;32(6):1159-1168. doi: 10.1177/09622802231164737. Epub 2023 Mar 30.
4
Response adaptive randomization design for a two-stage study with binary response.
J Biopharm Stat. 2023 Sep 3;33(5):575-585. doi: 10.1080/10543406.2023.2170399. Epub 2023 Feb 3.
5
Monte Carlo cross-validation for a study with binary outcome and limited sample size.
BMC Med Inform Decis Mak. 2022 Oct 17;22(1):270. doi: 10.1186/s12911-022-02016-z.

本文引用的文献

1
Machine learning methods to predict amyloid positivity using domain scores from cognitive tests.
Sci Rep. 2021 Mar 1;11(1):4822. doi: 10.1038/s41598-021-83911-9.
2
Optimal two-stage designs based on restricted mean survival time for a single-arm study.
Contemp Clin Trials Commun. 2021 Jan 23;21:100732. doi: 10.1016/j.conctc.2021.100732. eCollection 2021 Mar.
3
Accurate confidence intervals for proportion in studies with clustered binary outcome.
Stat Methods Med Res. 2020 Oct;29(10):3006-3018. doi: 10.1177/0962280220913971. Epub 2020 Apr 3.
4
Two-stage optimal designs based on exact variance for a single-arm trial with survival endpoints.
J Biopharm Stat. 2020 Sep 2;30(5):797-805. doi: 10.1080/10543406.2020.1730869. Epub 2020 Mar 4.
5
Exact Unconditional Tests for Dichotomous Data When Comparing Multiple Treatments With a Single Control.
Ther Innov Regul Sci. 2020 Mar;54(2):411-417. doi: 10.1007/s43441-019-00070-w. Epub 2020 Jan 6.
6
Exact inference for the random-effect model for meta-analyses with rare events.
Stat Med. 2020 Feb 10;39(3):252-264. doi: 10.1002/sim.8396. Epub 2019 Dec 9.
7
Alzheimer's disease drug development pipeline: 2019.
Alzheimers Dement (N Y). 2019 Jul 9;5:272-293. doi: 10.1016/j.trci.2019.05.008. eCollection 2019.
8
Comparing survival functions with interval-censored data in the presence of an intermediate clinical event.
BMC Med Res Methodol. 2018 Oct 1;18(1):98. doi: 10.1186/s12874-018-0558-y.
9
Statistical advances in clinical trials and clinical research.
Alzheimers Dement (N Y). 2018 Jun 14;4:366-371. doi: 10.1016/j.trci.2018.04.006. eCollection 2018.
10
Group Sequential Survival Trial Design and Monitoring Using the Log-Rank Test.
Stat Biopharm Res. 2017;9(1):35-43. doi: 10.1080/19466315.2016.1189355. Epub 2017 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验