Suppr超能文献

计算科学与工程中的研究与教育。

Research and Education in Computational Science and Engineering.

出版信息

SIAM Rev Soc Ind Appl Math. 2018;60(3):707-754. doi: 10.1137/16M1096840. Epub 2018 Aug 8.

Abstract

This report presents challenges, opportunities and directions for computational science and engineering (CSE) research and education for the next decade. Over the past two decades the field of CSE has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers with algorithmic inventions and software systems that transcend disciplines and scales. CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments-including the architectural complexity of extreme-scale computing, the data revolution and increased attention to data-driven discovery, and the specialization required to follow the applications to new frontiers-is redefining the scope and reach of the CSE endeavor. With these many current and expanding opportunities for the CSE field, there is a growing demand for CSE graduates and a need to expand CSE educational offerings. This need includes CSE programs at both the undergraduate and graduate levels, as well as continuing education and professional development programs, exploiting the synergy between computational science and data science. Yet, as institutions consider new and evolving educational programs, it is essential to consider the broader research challenges and opportunities that provide the context for CSE education and workforce development.

摘要

本报告介绍了未来十年计算科学与工程(CSE)研究与教育面临的挑战、机遇和发展方向。在过去二十年中,CSE领域已渗透到学术界、工业界和实验室的基础研究和应用研究中,以推动发现、优化系统、支持决策者并培养科学和工程人才队伍。基于几个世纪的理论和实验,CSE进行计算实验,以回答理论和实验单独都无法回答的问题。CSE为科学家和工程师提供超越学科和规模的算法发明和软件系统。CSE将并行计算的能力应用于大量数据。基于数学的先进计算已成为科学、工程、技术和社会几乎所有领域中普遍的发现和创新手段;而CSE社区正是这一变革的核心。然而,包括极端规模计算的架构复杂性、数据革命以及对数据驱动发现的更多关注,以及跟随应用进入新领域所需的专业化等一系列颠覆性发展,正在重新定义CSE工作的范围和影响力。鉴于CSE领域目前有众多且不断扩大的机会,对CSE毕业生的需求日益增长,并且需要扩大CSE教育课程。这种需求包括本科和研究生层次的CSE课程,以及继续教育和专业发展课程,利用计算科学与数据科学之间的协同作用。然而,当各机构考虑新的和不断发展的教育项目时,至关重要的是要考虑更广泛的研究挑战和机遇,这些挑战和机遇为CSE教育和劳动力发展提供了背景。

相似文献

1
Research and Education in Computational Science and Engineering.计算科学与工程中的研究与教育。
SIAM Rev Soc Ind Appl Math. 2018;60(3):707-754. doi: 10.1137/16M1096840. Epub 2018 Aug 8.
9

本文引用的文献

1
The top 10 challenges in extreme-scale visual analytics.超大规模视觉分析中的十大挑战。
IEEE Comput Graph Appl. 2012 Jul-Aug;32(4):63-7. doi: 10.1109/mcg.2012.87.
2
Society for industrial and applied mathematics (a5).
Science. 1966 Feb 18;151(3712):859-60. doi: 10.1126/science.151.3712.859-b.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验