Suppr超能文献

基于 SERS 的正常至轻度升高范围内白蛋白尿的定量检测。

SERS-based quantification of albuminuria in the normal-to-mildly increased range.

机构信息

Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania.

出版信息

Analyst. 2018 Nov 5;143(22):5372-5379. doi: 10.1039/c8an01072b.

Abstract

The lack of an accurate point-of-care detection system for microalbuminuria represents an important unmet medical need that contributes to the morbidity and mortality of patients with kidney diseases. In this proof-of-concept study, we used SERS spectroscopy to detect urinary albumin concentrations in the normal-to-mildly increased albuminuria range, a strategy that could be useful for the early diagnosis of renal impairment due to uncontrolled hypertension, cardiovascular disease or diabetes. We analyzed 27 urine samples by SERS, using iodide-modified silver nanoparticles and we could discriminate between groups with high and low albumin concentrations with an overall accuracy of 89%, 93% and 89%, using principal component analysis-linear discriminant analysis and cut-off values of 3, 6 and 10 μg mL-1 for urinary albumin concentrations, respectively. We achieved a detection limit of 3 μg mL-1 for human serum albumin based on the 1002 cm-1 SERS band, attributed to the ring breathing vibration of phenylalanine. Our detection limit is similar to that of the immunoturbidimetric assays and around one order of magnitude below the detection limit of urinary dipsticks used to detect microalbuminuria. We used principal least squares regression for building a spectral model for quantifying albumin. Using an independent prediction set, the R2 and root mean squared error of prediction between predicted and reference values of human serum albumin concentrations were 0.982 and 2.82, respectively. Here, we show that direct SERS spectroscopy has the sensitivity required for detecting clinically relevant concentrations of urinary albumin, a strategy that could be used in the future for the point-of-care screening of microalbuminuria.

摘要

微量白蛋白尿缺乏准确的即时检测系统,这是一个重要的未满足的医疗需求,导致肾脏疾病患者的发病率和死亡率升高。在这项概念验证研究中,我们使用 SERS 光谱法检测正常至轻度白蛋白尿范围内的尿白蛋白浓度,这种策略可能有助于早期诊断因未控制的高血压、心血管疾病或糖尿病导致的肾损伤。我们用碘化物修饰的银纳米粒子对 27 个尿液样本进行了 SERS 分析,使用主成分分析-线性判别分析,分别以尿白蛋白浓度 3、6 和 10 μg mL-1 作为截断值,可将高浓度和低浓度白蛋白的组区分开来,总体准确率分别为 89%、93%和 89%。我们基于 1002 cm-1 的 SERS 带,即苯丙氨酸的环呼吸振动,实现了对人血清白蛋白的检测限为 3 μg mL-1。我们的检测限与免疫比浊测定法相似,比用于检测微量白蛋白尿的尿试纸的检测限低一个数量级左右。我们使用主成分最小二乘回归建立了用于定量白蛋白的光谱模型。使用独立的预测集,人血清白蛋白浓度的预测值和参考值之间的 R2 和预测值的均方根误差分别为 0.982 和 2.82。在这里,我们表明直接 SERS 光谱法具有检测临床相关浓度尿白蛋白的灵敏度,这一策略将来可能用于即时微量白蛋白尿的筛选。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验