York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England.
School of Molecular and Cellular Biology, The Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, England.
Acta Crystallogr D Struct Biol. 2018 Oct 1;74(Pt 10):946-955. doi: 10.1107/S2059798318009737. Epub 2018 Oct 2.
The biological conversion of lignocellulosic matter into high-value chemicals or biofuels is of increasing industrial importance as the sector slowly transitions away from nonrenewable sources. Many industrial processes involve the use of cellulolytic enzyme cocktails - a selection of glycoside hydrolases and, increasingly, polysaccharide oxygenases - to break down recalcitrant plant polysaccharides. ORFs from the genome of Teredinibacter turnerae, a symbiont hosted within the gills of marine shipworms, were identified in order to search for enzymes with desirable traits. Here, a putative T. turnerae glycoside hydrolase from family 8, hereafter referred to as TtGH8, is analysed. The enzyme is shown to be active against β-1,4-xylan and mixed-linkage (β-1,3,β-1,4) marine xylan. Kinetic parameters, obtained using high-performance anion-exchange chromatography with pulsed amperometric detection and 3,5-dinitrosalicyclic acid reducing-sugar assays, show that TtGH8 catalyses the hydrolysis of β-1,4-xylohexaose with a k/K of 7.5 × 10 M min but displays maximal activity against mixed-linkage polymeric xylans, hinting at a primary role in the degradation of marine polysaccharides. The three-dimensional structure of TtGH8 was solved in uncomplexed and xylobiose-, xylotriose- and xylohexaose-bound forms at approximately 1.5 Å resolution; the latter was consistent with the greater k/K for hexasaccharide substrates. A B boat conformation observed in the -1 position of bound xylotriose is consistent with the proposed conformational itinerary for this class of enzyme. This work shows TtGH8 to be effective at the degradation of xylan-based substrates, notably marine xylan, further exemplifying the potential of T. turnerae for effective and diverse biomass degradation.
木质纤维素物质向高价值化学品或生物燃料的生物转化在工业上变得越来越重要,因为该行业正逐渐从不可再生资源过渡。许多工业过程都涉及使用纤维素酶混合物——糖苷水解酶的选择,以及越来越多的多糖氧化酶——来分解顽固的植物多糖。为了寻找具有理想特性的酶,从海洋船蛆鳃内共生的 Teredinibacter turnerae 基因组中鉴定出了一些开放阅读框。本文分析了一种假定的 T. turnerae 糖苷水解酶家族 8(以下简称 TtGH8)。结果表明,该酶对β-1,4-木聚糖和混合连接(β-1,3,β-1,4)海洋木聚糖具有活性。使用高效阴离子交换色谱-脉冲安培检测和 3,5-二硝基水杨酸还原糖测定法获得的动力学参数表明,TtGH8 催化β-1,4-木六糖水解的 k/K 为 7.5×10^M^min,但对混合连接聚合物木聚糖显示出最大的活性,这暗示了其在海洋多糖降解中的主要作用。TtGH8 的三维结构在未结合和结合木二糖、木三糖和木六糖的形式下以约 1.5 Å 的分辨率得到解决;后一种情况与六糖底物的更大 k/K 一致。在结合的木三糖的-1 位置观察到的 B 船构象与该酶类的预期构象途径一致。这项工作表明 TtGH8 能够有效地降解基于木聚糖的底物,特别是海洋木聚糖,进一步证明了 T. turnerae 有效和多样化生物质降解的潜力。