Suppr超能文献

亚铁(II)对异养反硝化菌修复硝酸盐和亚铁(II)污染地下水的反应活性的影响。

Effect of Fe(II) on reactivity of heterotrophic denitrifiers in the remediation of nitrate- and Fe(II)-contaminated groundwater.

机构信息

Key Laboratory of Groundwater Circulation and Environmental Evolution (China University of Geosciences (Beijing)), Ministry of Education, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China.

Key Laboratory of Groundwater Circulation and Environmental Evolution (China University of Geosciences (Beijing)), Ministry of Education, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China.

出版信息

Ecotoxicol Environ Saf. 2018 Dec 30;166:437-445. doi: 10.1016/j.ecoenv.2018.09.104. Epub 2018 Oct 3.

Abstract

Heterotrophic denitrifiers, capable of simultaneous nitrate reduction and Fe(II) oxidation, can be applied for the remediation of nitrate and Fe(II) combined contamination in groundwater. Under strictly anaerobic condition, denitrifying microbial communities were enriched with the coexistence of soluble nitrate, Fe(II) and associated nutrient elements to monitor the denitrification process. Low abundance of Fe(II) (e.g., 10 mg L in this study) tended to stimulate the activity of denitrifying microbial communities. However, elevated Fe(II) concentration (50 and 100 mg L in this study), acted as a stress, strongly inhibited the activity and reproduction of denitrifiers. Besides, through thermodynamics calculations, methanol rather than Fe(II) was proved to be the preferable electron donors for both energy metabolism and anabolism. Betaproteobacteria was found to be the most predominant (sub)phylum in all enriched microbial assemblages. Methylovesartilis was the most predominant group mainly catalyzed for methanol based denitrification, and others denitrifiers included Methylophilaceae, Dechloromonas and Denitratisoma. Excessive Fe(II) in the solution greatly reduced the proportions of these denitrifying groups, while the influence seemed to be less apparent on functional genes composition. As such, a conceptional metabolism pathway of the most dominant genus (i.e., Methylovesartilis) for nitrate reducing as well as methanol and Fe(II) oxidation confirmed that biotic nitrate reducing and Fe(II) oxidizing were potentially proceeded in cytoplasm by enzymes such as NarGHI. The Fe(II) oxidation rate depended on the rate of Fe(II) entering into the cell. These findings provide a clear mechanistic understanding of heterotrophic denitrification coupling with Fe(II) oxidation, and environmental implication for the bioremediation of nitrate and Fe(II) contaminated groundwater.

摘要

异养反硝化菌能够同时进行硝酸盐还原和 Fe(II)氧化,可以应用于地下水硝酸盐和 Fe(II)联合污染的修复。在严格的厌氧条件下,共存的可溶性硝酸盐、Fe(II)和相关营养元素促进了反硝化微生物群落的富集,以监测反硝化过程。低浓度的 Fe(II)(如本研究中的 10mg/L)往往会刺激反硝化微生物群落的活性。然而,高浓度的 Fe(II)(如本研究中的 50 和 100mg/L)会对反硝化菌的活性和繁殖产生强烈的抑制作用。此外,通过热力学计算,甲醇而不是 Fe(II)被证明是能量代谢和合成代谢的更优电子供体。β变形菌门被发现是所有富集微生物组合中最主要的(亚)门。Methylovesartilis 是主要催化甲醇反硝化的最主要菌群,其他反硝化菌包括甲基杆菌科、脱氯菌属和反硝化菌属。溶液中过多的 Fe(II)大大降低了这些反硝化菌的比例,而对功能基因组成的影响似乎不那么明显。因此,对于硝酸盐还原以及甲醇和 Fe(II)氧化的最优势属(即 Methylovesartilis)的概念代谢途径的确认,证明了生物硝酸盐还原和 Fe(II)氧化可能是在细胞质中由酶如 NarGHI 进行的。Fe(II)氧化速率取决于 Fe(II)进入细胞的速率。这些发现为异养反硝化耦合 Fe(II)氧化的机制提供了清晰的认识,对硝酸盐和 Fe(II)污染地下水的生物修复具有环境意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验