Suppr超能文献

用于帕金森病深部脑刺激手术中机器学习的微电极记录特征选择的综述。

A review on microelectrode recording selection of features for machine learning in deep brain stimulation surgery for Parkinson's disease.

机构信息

Department of Neurosurgery, National Neuroscience Institute, Singapore; Department of Neurosurgery, Singapore General Hospital, Singapore.

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore.

出版信息

Clin Neurophysiol. 2019 Jan;130(1):145-154. doi: 10.1016/j.clinph.2018.09.018. Epub 2018 Sep 25.

Abstract

OBJECTIVE

This study seeks to systematically review the selection of features and algorithms for machine learning and automation in deep brain stimulation surgery (DBS) for Parkinson's disease. This will assist in consolidating current knowledge and accuracy levels to allow greater understanding and research to be performed in automating this process, which could lead to improved clinical outcomes.

METHODS

A systematic literature review search was conducted for all studies that utilized machine learning and DBS in Parkinson's disease.

RESULTS

Ten studies were identified from 2006 utilizing machine learning in DBS surgery for Parkinson's disease. Different combinations of both spike independent and spike dependent features have been utilized with different machine learning algorithms to attempt to delineate the subthalamic nucleus (STN) and its surrounding structures.

CONCLUSION

The state-of-the-art algorithms achieve good accuracy and error rates with relatively short computing time, however, the currently achievable accuracy is not sufficiently robust enough for clinical practice. Moreover, further research is required for identifying subterritories of the STN.

SIGNIFICANCE

This is a comprehensive summary of current machine learning algorithms that discriminate the STN and its adjacent structures for DBS surgery in Parkinson's disease.

摘要

目的

本研究旨在系统地回顾深度学习刺激手术(DBS)中用于帕金森病的机器学习和自动化的特征和算法选择。这将有助于整合当前的知识和准确性水平,以便更深入地理解和研究这一过程的自动化,从而改善临床结果。

方法

对所有利用机器学习和帕金森病 DBS 的研究进行了系统的文献检索。

结果

从 2006 年开始,共确定了 10 项研究,这些研究都将机器学习应用于帕金森病的 DBS 手术中。不同的研究使用了不同的机器算法,结合了独立脉冲和依赖脉冲的特征,以试图描绘出丘脑底核(STN)及其周围结构。

结论

目前最先进的算法实现了较好的准确性和误差率,并且计算时间相对较短,但是目前的准确性还不够稳健,无法应用于临床实践。此外,还需要进一步研究以确定 STN 的亚区。

意义

这是一个全面总结了当前用于帕金森病 DBS 手术中区分 STN 及其相邻结构的机器学习算法的文献综述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验