Suppr超能文献

基于机器学习的脑信号解码用于智能自适应脑深部电刺激。

Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation.

机构信息

Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany.

Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States.

出版信息

Exp Neurol. 2022 May;351:113993. doi: 10.1016/j.expneurol.2022.113993. Epub 2022 Jan 29.

Abstract

Sensing enabled implantable devices and next-generation neurotechnology allow real-time adjustments of invasive neuromodulation. The identification of symptom and disease-specific biomarkers in invasive brain signal recordings has inspired the idea of demand dependent adaptive deep brain stimulation (aDBS). Expanding the clinical utility of aDBS with machine learning may hold the potential for the next breakthrough in the therapeutic success of clinical brain computer interfaces. To this end, sophisticated machine learning algorithms optimized for decoding of brain states from neural time-series must be developed. To support this venture, this review summarizes the current state of machine learning studies for invasive neurophysiology. After a brief introduction to the machine learning terminology, the transformation of brain recordings into meaningful features for decoding of symptoms and behavior is described. Commonly used machine learning models are explained and analyzed from the perspective of utility for aDBS. This is followed by a critical review on good practices for training and testing to ensure conceptual and practical generalizability for real-time adaptation in clinical settings. Finally, first studies combining machine learning with aDBS are highlighted. This review takes a glimpse into the promising future of intelligent adaptive DBS (iDBS) and concludes by identifying four key ingredients on the road for successful clinical adoption: i) multidisciplinary research teams, ii) publicly available datasets, iii) open-source algorithmic solutions and iv) strong world-wide research collaborations.

摘要

感应式植入式设备和下一代神经技术允许实时调整侵入性神经调节。在侵入性脑信号记录中识别症状和疾病特异性生物标志物的方法激发了需求依赖型自适应脑深部刺激(aDBS)的想法。通过机器学习扩展 aDBS 的临床实用性,可能为临床脑机接口治疗成功的下一个突破提供潜力。为此,必须开发针对从神经时间序列解码脑状态的优化的复杂机器学习算法。为了支持这一冒险,本综述总结了用于侵入性神经生理学的机器学习研究的现状。在简要介绍机器学习术语之后,描述了将脑记录转换为用于解码症状和行为的有意义特征的过程。从对 aDBS 的实用性的角度解释和分析了常用的机器学习模型。接下来,对训练和测试的良好实践进行了批判性回顾,以确保在临床环境中进行实时适应的概念和实践的通用性。最后,强调了将机器学习与 aDBS 相结合的初步研究。本综述展望了智能自适应 DBS(iDBS)的光明未来,并通过确定成功临床应用的四个关键要素来结束:i)多学科研究团队,ii)公开可用的数据集,iii)开源算法解决方案和 iv)强大的全球研究合作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f0c/10521329/d35d07674156/nihms-1929542-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验