Hilton Ross P, Zheng Yuchen, Serban Nicoleta
H. Milton Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology.
J Am Stat Assoc. 2018;113(521):111-121. doi: 10.1080/01621459.2017.1330203. Epub 2017 Jun 26.
We introduce a modeling approach for characterizing heterogeneity in healthcare utilization using massive medical claims data. We first translate the medical claims observed for a large study population and across five years into individual-level discrete events of care called . We model the utilization sequences using an exponential proportional hazards mixture model to capture heterogeneous behaviors in patients' healthcare utilization. The objective is to cluster patients according to their longitudinal utilization behaviors and to determine the main drivers of variation in healthcare utilization while controlling for the demographic, geographic, and health characteristics of the patients. Due to the computational infeasibility of fitting a parametric proportional hazards model for high-dimensional, large sample size data we use an iterative one-step procedure to estimate the model parameters and impute the cluster membership. The approach is used to draw inferences on utilization behaviors of children in the Medicaid system with persistent asthma across six states. We conclude with policy implications for targeted interventions to improve adherence to recommended care practices for pediatric asthma.
我们介绍了一种使用海量医疗理赔数据来表征医疗保健利用异质性的建模方法。我们首先将针对一大群研究对象且跨越五年观察到的医疗理赔转化为称为“护理个体离散事件”的个体层面事件。我们使用指数比例风险混合模型对利用序列进行建模,以捕捉患者医疗保健利用中的异质行为。目标是根据患者的纵向利用行为对患者进行聚类,并在控制患者的人口统计学、地理和健康特征的同时,确定医疗保健利用变化的主要驱动因素。由于对高维、大样本量数据拟合参数比例风险模型在计算上不可行,我们使用迭代一步法来估计模型参数并估算聚类成员身份。该方法用于推断六个州患有持续性哮喘的医疗补助系统儿童的利用行为。我们最后得出针对改善儿科哮喘推荐护理实践依从性的有针对性干预措施的政策含义。