Suppr超能文献

大规模参数生存分析

Large-scale parametric survival analysis.

作者信息

Mittal Sushil, Madigan David, Cheng Jerry Q, Burd Randall S

机构信息

Department of Statistics, Columbia University, 1255 Amsterdam Avenue, New York, NY 10027, USA.

出版信息

Stat Med. 2013 Oct 15;32(23):3955-71. doi: 10.1002/sim.5817. Epub 2013 Apr 28.

Abstract

Survival analysis has been a topic of active statistical research in the past few decades with applications spread across several areas. Traditional applications usually consider data with only a small numbers of predictors with a few hundreds or thousands of observations. Recent advances in data acquisition techniques and computation power have led to considerable interest in analyzing very-high-dimensional data where the number of predictor variables and the number of observations range between 10(4) and 10(6). In this paper, we present a tool for performing large-scale regularized parametric survival analysis using a variant of the cyclic coordinate descent method. Through our experiments on two real data sets, we show that application of regularized models to high-dimensional data avoids overfitting and can provide improved predictive performance and calibration over corresponding low-dimensional models.

摘要

在过去几十年中,生存分析一直是活跃的统计研究主题,其应用广泛涉及多个领域。传统应用通常考虑只有少量预测变量且观测值只有几百或几千个的数据。数据采集技术和计算能力的最新进展引发了人们对分析超高维数据的浓厚兴趣,其中预测变量的数量和观测值的数量在10⁴到10⁶之间。在本文中,我们提出了一种使用循环坐标下降法的变体来执行大规模正则化参数生存分析的工具。通过我们在两个真实数据集上的实验,我们表明将正则化模型应用于高维数据可避免过拟合,并且与相应的低维模型相比,能提供更好的预测性能和校准。

相似文献

1
Large-scale parametric survival analysis.大规模参数生存分析
Stat Med. 2013 Oct 15;32(23):3955-71. doi: 10.1002/sim.5817. Epub 2013 Apr 28.
7
Parametric and penalized generalized survival models.参数化和惩罚广义生存模型。
Stat Methods Med Res. 2018 May;27(5):1531-1546. doi: 10.1177/0962280216664760. Epub 2016 Sep 1.
9
Parametric survival densities from phase-type models.
Lifetime Data Anal. 2014 Jul;20(3):459-80. doi: 10.1007/s10985-013-9278-0. Epub 2013 Aug 22.

引用本文的文献

本文引用的文献

7
Survival analysis with high-dimensional covariates.高维协变量的生存分析。
Stat Methods Med Res. 2010 Feb;19(1):29-51. doi: 10.1177/0962280209105024. Epub 2009 Aug 4.
10
Sparse kernel methods for high-dimensional survival data.用于高维生存数据的稀疏核方法。
Bioinformatics. 2008 Jul 15;24(14):1632-8. doi: 10.1093/bioinformatics/btn253. Epub 2008 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验