IEEE Trans Neural Netw Learn Syst. 2019 Oct;30(10):2963-2972. doi: 10.1109/TNNLS.2018.2869747. Epub 2018 Oct 2.
At present, convolutional neural networks (CNNs) have become popular in visual classification tasks because of their superior performance. However, CNN-based methods do not consider the correlation of visual data to be classified. Recently, graph convolutional networks (GCNs) have mitigated this problem by modeling the pairwise relationship in visual data. Real-world tasks of visual classification typically must address numerous complex relationships in the data, which are not fit for the modeling of the graph structure using GCNs. Therefore, it is vital to explore the underlying correlation of visual data. Regarding this issue, we propose a framework called the hypergraph-induced convolutional network to explore the high-order correlation in visual data during deep neural networks. First, a hypergraph structure is constructed to formulate the relationship in visual data. Then, the high-order correlation is optimized by a learning process based on the constructed hypergraph. The classification tasks are performed by considering the high-order correlation in the data. Thus, the convolution of the hypergraph-induced convolutional network is based on the corresponding high-order relationship, and the optimization on the network uses each data and considers the high-order correlation of the data. To evaluate the proposed hypergraph-induced convolutional network framework, we have conducted experiments on three visual data sets: the National Taiwan University 3-D model data set, Princeton Shape Benchmark, and multiview RGB-depth object data set. The experimental results and comparison in all data sets demonstrate the effectiveness of our proposed hypergraph-induced convolutional network compared with the state-of-the-art methods.
目前,卷积神经网络(CNN)在视觉分类任务中因其优异的性能而得到广泛应用。然而,基于 CNN 的方法并未考虑待分类的视觉数据的相关性。最近,图卷积网络(GCN)通过对视觉数据中的成对关系进行建模,缓解了这一问题。视觉分类的实际任务通常必须解决数据中大量复杂的关系,而这些关系不适合使用 GCN 对图结构进行建模。因此,探索视觉数据的潜在相关性至关重要。针对这个问题,我们提出了一个称为超图诱导卷积网络的框架,用于在深度神经网络中探索视觉数据中的高阶相关性。首先,构建一个超图结构来描述视觉数据中的关系。然后,通过基于构建的超图的学习过程来优化高阶相关性。通过考虑数据中的高阶相关性来执行分类任务。因此,超图诱导卷积网络的卷积是基于相应的高阶关系,网络上的优化使用每个数据并考虑数据的高阶相关性。为了评估所提出的超图诱导卷积网络框架,我们在三个视觉数据集上进行了实验:台湾大学 3-D 模型数据集、普林斯顿形状基准数据集和多视图 RGB-深度对象数据集。在所有数据集上的实验结果和比较都表明,与最先进的方法相比,我们提出的超图诱导卷积网络更加有效。