IEEE J Biomed Health Inform. 2019 Sep;23(5):2189-2195. doi: 10.1109/JBHI.2018.2874185. Epub 2018 Oct 4.
While physiological warning signs prior to deterioration events during hospitalization have been widely studied, evaluating clinical interventions, such as rapid response team (RRT) activations, based on scoring systems remains an understudied area. Simulation of physiological deterioration patterns represented by scoring systems can facilitate testing different RRT policies without disturbing care processes. Christiana Care Early Warning System (CEWS) is a scoring system developed at the study hospital to detect the physiological warning signs and inform RRT activations. The objective of this study is to evaluate CEWS-triggered RRT policies based on patient demographics and policy structures. Using retrospective data derived from a subset of electronic health records between December 2015 and December 2016 (6000 patients), we developed a microsimulation model with integrated regression analysis to compare RRT policies on subpopulations defined by age, gender, and comorbidities to find score thresholds that result in the lowest percent of time spent above critical CEWS values. Policies that rely on average scores were more sensitive to threshold changes compared to policies that rely on current value and change in the CEWS. Policy using score threshold 10 provided the lowest percentage of time under the critical condition for majority of subpopulations. The proposed model is a novel framework to simulate individual deterioration patterns and systematically evaluate RRT policies based on their impact on health conditions. Our work highlights the importance of integration of data-driven models into personalized care and represents a significant opportunity to inform biomedical and health informatics research on designing and evaluating EWS-based clinical interventions.
虽然在住院期间恶化事件前的生理警告信号已得到广泛研究,但基于评分系统评估临床干预措施(如快速反应团队 (RRT) 的激活)仍是一个研究不足的领域。通过模拟评分系统代表的生理恶化模式,可以在不干扰护理过程的情况下测试不同的 RRT 策略。Christiana Care Early Warning System (CEWS) 是在研究医院开发的评分系统,用于检测生理警告信号并通知 RRT 激活。本研究的目的是根据患者人口统计学和政策结构评估 CEWS 触发的 RRT 政策。我们使用 2015 年 12 月至 2016 年 12 月(6000 名患者)的电子健康记录的子集衍生的回顾性数据,开发了一个带有集成回归分析的微模拟模型,以比较基于年龄、性别和合并症的亚组的 RRT 政策,找到导致关键 CEWS 值以上时间比例最低的分数阈值。与依赖当前值和 CEWS 变化的政策相比,依赖平均分数的政策对阈值变化更为敏感。对于大多数亚组,使用评分阈值 10 的策略提供了处于临界条件下的时间比例最低。该模型是一种模拟个体恶化模式并基于其对健康状况的影响系统评估 RRT 策略的新框架。我们的工作强调了将数据驱动模型纳入个性化护理的重要性,并为基于 EWS 的临床干预的设计和评估提供了生物医学和健康信息学研究的重要机会。