Suppr超能文献

护士如何使用早期预警评分系统来检测和应对患者病情恶化,以确保患者安全? 系统评价。

How do nurses use early warning scoring systems to detect and act on patient deterioration to ensure patient safety? A scoping review.

机构信息

Gold Coast University Hospital, Queensland, Australia; Masters Student Acute Care Nursing, School of Nursing and Midwifery, Griffith University, Queensland, Australia.

Menzies Health Institute Queensland and School of Nursing and Midwifery, Griffith University, Queensland, Australia.

出版信息

Int J Nurs Stud. 2019 Jun;94:166-178. doi: 10.1016/j.ijnurstu.2019.03.012. Epub 2019 Mar 23.

Abstract

BACKGROUND

Despite widespread adoption of rapid response systems and the use of various early warning scoring systems, the detection of patient deterioration remains suboptimal, leading to the development of potentially avoidable serious adverse events. Why this occurs has been the focus of many investigations, but the complexities around advancing understanding that leads to effective actions are less evident.

OBJECTIVE

To better understand medical/surgical nurses use of early warning scoring systems.

DESIGN

A five-step process was used in this scoping review including: identify the research question; search and identify the relevant studies; selecting relevant studies; charting the data; and collate, summarize and report the results. The PRISMA extension for scoping reviews was used to guide this scoping review.

DATA SOURCES

In August 2018 a literature search was performed using the following medical subject headings: physiological, clinical deterioration, and the expanders early warning score, system, nurse attitudes, with Boolean operators in Ovid MEDLINE, CINAHL, and EMBASE databases.

REVIEW METHODS

Extracted data included study aims, key findings, afferent/efferent focus and rapid response team description. Effective practice and organisation of care taxonomy guided data synthesis, before a thematic analysis was performed.

RESULTS

Of 120 unique articles, 23 were included in the scoping review (11 qualitative, 8 quantitative and 4 mixed methods studies). Fifteen studies focused on the afferent limb of the rapid response system whilst eight focused on both the afferent and efferent limbs. In the effective practice and organisation of care taxonomy twenty-two studies met criteria for quality and safety improvements while nineteen met criteria for referral, outreach and teams. Three themes, Inconsistent activation of the rapid response team; Barriers to following early warning scoring system algorithms; and Overreliance on scores emerged.

CONCLUSION

Nurses aim to use early warning score systems to detect deterioration and ensure patient safety, however cultures, confidence and past experiences impact on rates of afferent limb failure globally. Simple to follow algorithms used in track and trigger charts are likely difficult for nurses to adhere to due to heavy workloads and challenges in getting medical officers to review within recommended time frames. Nurses rely heavily on the scores generated by early warning score systems but should aim to follow algorithms better and undertake holistic physical assessments to detect deterioration earlier and ensure patient safety is not compromised.

摘要

背景

尽管快速反应系统得到了广泛应用,各种早期预警评分系统也得到了应用,但患者病情恶化的检测仍不尽如人意,导致潜在可避免的严重不良事件的发生。为什么会出现这种情况一直是许多调查的重点,但在推进理解以采取有效行动方面的复杂性却不那么明显。

目的

更好地了解医疗/外科护士使用早期预警评分系统的情况。

设计

在这项范围综述中使用了五个步骤,包括:确定研究问题;搜索并确定相关研究;选择相关研究;绘制数据;整理、总结和报告结果。使用 PRISMA 扩展工具来指导这项范围综述。

数据来源

2018 年 8 月,使用以下医学主题词在 Ovid MEDLINE、CINAHL 和 EMBASE 数据库中进行文献检索:生理、临床恶化和扩展早期预警评分、系统、护士态度,使用布尔运算符。

综述方法

提取的数据包括研究目的、主要发现、传入/传出焦点和快速反应团队描述。有效实践和组织护理分类法指导数据综合,然后进行主题分析。

结果

在 120 篇独特的文章中,有 23 篇被纳入范围综述(11 篇定性研究、8 篇定量研究和 4 篇混合方法研究)。15 项研究侧重于快速反应系统的传入环节,8 项研究则同时侧重于传入和传出环节。在有效实践和组织护理分类法中,有 22 项研究符合质量和安全改进标准,19 项研究符合转诊、外展和团队标准。三个主题出现,即快速反应团队的激活不一致;遵循早期预警评分系统算法的障碍;过度依赖评分。

结论

护士的目的是使用早期预警评分系统来检测病情恶化,确保患者安全,但全球范围内的文化、信心和以往经验会影响传入环节的失败率。在跟踪和触发图表中使用简单的算法可能很难让护士遵守,因为工作量大,并且难以让医生在推荐的时间范围内进行审查。护士严重依赖早期预警评分系统生成的评分,但应该努力更好地遵循算法,并进行全面的身体评估,以更早地发现病情恶化,确保患者安全不受影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验