Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan.
Phys Rev Lett. 2018 Sep 21;121(12):126402. doi: 10.1103/PhysRevLett.121.126402.
Topological phases, such as Chern insulators, are defined in terms of additive indices that are stable against the addition of trivial degrees of freedom. Such topology presents an obstruction to any Wannier representation, namely, the representation of the electronic states in terms of symmetric, exponentially localized Wannier functions. Here, we address the converse question: Do obstructions to Wannier representation imply stable band topology? We answer this in the negative, pointing out that some bands can also display a distinct type of "fragile topology." Bands with fragile topology do not admit any Wannier representation by themselves, but such a representation becomes possible once certain additional trivial degrees of freedom are supplied. We construct a physical model of fragile topology on the honeycomb lattice that also helps resolve a recent puzzle in band theory. This model provides a counterexample to the assumption that splitting of an "elementary band representation" introduced in [B. Bradlyn et al., Topological quantum chemistry, Nature (London) 547, 298 (2017)] leads to bands that are individually topological. Instead, half of the split bands of our model realize a trivial band with exponentially localized symmetric Wannier functions, whereas the second half possess fragile topology. Our work highlights an important and previously overlooked connection between band structure and Wannier functions, and is expected to have far-reaching consequences given the central role played by Wannier functions in the modeling of real materials.
拓扑相,如陈绝缘体,是根据稳定的加性指标来定义的,这些指标不受平凡自由度的影响。这种拓扑结构对任何 wannier 表示都是一种障碍,即电子态的表示是基于对称的、指数局域的 wannier 函数。在这里,我们解决了相反的问题:wannier 表示的障碍是否意味着稳定的能带拓扑?我们的回答是否定的,并指出一些能带也可能显示出一种明显的“脆弱拓扑”。具有脆弱拓扑的能带本身不能通过 wannier 表示来表示,但是一旦提供了某些额外的平凡自由度,这种表示就成为可能。我们在蜂窝晶格上构造了一个脆弱拓扑的物理模型,该模型也有助于解决能带理论中的一个近期难题。这个模型提供了一个反例,证明了在[B. Bradlyn 等人,拓扑量子化学,自然(伦敦)547, 298(2017)]中引入的“基本能带表示”的分裂并不一定会导致具有独立拓扑的能带。相反,我们模型的一半分裂能带实现了具有指数局域对称 wannier 函数的平凡能带,而另一半则具有脆弱拓扑。我们的工作突出了能带结构和 wannier 函数之间的一个重要的、以前被忽视的联系,并有望产生深远的影响,因为 wannier 函数在实际材料的建模中扮演着核心角色。