Nano Lett. 2018 Nov 14;18(11):7104-7110. doi: 10.1021/acs.nanolett.8b03109. Epub 2018 Oct 11.
Molybdenum disulfide (MoS) has been recognized as a promising cost-effective catalyst for water-splitting hydrogen production. However, the desired performance of MoS is often limited by insufficient edge-terminated active sites, poor electrical conductivity, and inefficient contact to the supporting substrate. To address these limitations, we developed a unique nanoarchitecture (namely, winged Au@MoS heterostructures enabled by our discovery of the "seeding effect" of Au nanoparticles for the chemical vapor deposition synthesis of vertically aligned few-layer MoS wings). The winged Au@MoS heterostructures provide an abundance of edge-terminated active sites and are found to exhibit dramatically improved electrocatalytic activity for the hydrogen evolution reaction. Theoretical simulations conducted for this unique heterostructure reveal that the hydrogen evolution is dominated by the proton adsorption step, which can be significantly promoted by introducing sufficient edge active sites. Our study introduces a new morphological engineering strategy to make the pristine MoS layered structures highly competitive earth-abundant catalysts for efficient hydrogen production.
二硫化钼(MoS)已被认为是一种很有前途的具有成本效益的水分解制氢催化剂。然而,MoS 的理想性能往往受到边缘终止活性位不足、导电性差以及与支撑基底的有效接触有限的限制。为了解决这些限制,我们开发了一种独特的纳米结构(即通过我们发现的金纳米粒子在化学气相沉积合成垂直排列的少层 MoS 翼片过程中的“成核效应”实现的带翼 Au@MoS 异质结构)。带翼 Au@MoS 异质结构提供了丰富的边缘终止活性位,并且被发现对析氢反应表现出显著提高的电催化活性。对这种独特的异质结构进行的理论模拟表明,氢的析出主要受质子吸附步骤控制,通过引入足够的边缘活性位可以显著促进该步骤。我们的研究引入了一种新的形态工程策略,使原始的 MoS 层状结构成为高效制氢的极具竞争力的丰富地球催化剂。