Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
Cancer Res. 2018 Dec 1;78(23):6539-6548. doi: 10.1158/0008-5472.CAN-18-0901. Epub 2018 Oct 8.
: Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is an inherited cancer syndrome associated with a highly aggressive form of type 2 papillary renal cell carcinoma (PRCC). Germline inactivating alterations in () cause HLRCC and result in elevated levels of reactive oxygen species (ROS). Recent work indicates that PRCC cells have increased activation of ABL1, which promotes tumor growth, but how ABL1 is activated remains unclear. Given that oxidation can regulate protein-tyrosine phosphatase (PTP) catalytic activity, inactivation of an ABL-directed PTP by ROS might account for ABL1 activation in this malignancy. Our group previously developed "q-oxPTPome," a method that globally monitors the oxidation of classical PTPs. In this study, we present a refined q-oxPTPome, increasing its sensitivity by >10×. Applying q-oxPTPome to FH-deficient cell models showed that multiple PTPs were either highly oxidized (including PTPN12) or overexpressed. Highly oxidized PTPs were those with relatively high sensitivity to exogenous HO. Most PTP oxidation in FH-deficient cells was reversible, although nearly 40% of PTPN13 was irreversibly oxidized to the sulfonic acid state. Using substrate-trapping mutants, we mapped PTPs to their putative substrates and found that only PTPN12 could target ABL1. Furthermore, knockdown experiments identified PTPN12 as the major ABL1 phosphatase, and overexpression of PTPN12 inhibited ABL1 phosphorylation and HLRCC cell growth. These results show that ROS-induced oxidation of PTPN12 accounts for ABL1 phosphorylation in HLRCC-associated PRCC, revealing a novel mechanism for inactivating a tumor suppressor gene product and establishing a direct link between pathologic PTP oxidation and neoplastic disease. SIGNIFICANCE: This work identifies a novel mechanism of activation of the oncogenic kinase ABL1 via ROS-induced, oxidation-mediated inactivation of cognate protein tyrosine phosphatases.
遗传性平滑肌瘤病和肾细胞癌(HLRCC)是一种与 2 型乳头状肾细胞癌(PRCC)高度侵袭性形式相关的遗传性癌症综合征。()中的种系失活改变导致 HLRCC,并导致活性氧(ROS)水平升高。最近的工作表明,PRCC 细胞中 ABL1 的激活增加,这促进了肿瘤的生长,但 ABL1 如何被激活尚不清楚。鉴于氧化可以调节蛋白酪氨酸磷酸酶(PTP)的催化活性,ROS 对 ABL 定向 PTP 的失活可能解释了这种恶性肿瘤中 ABL1 的激活。我们的研究小组之前开发了“q-oxPTPome”,这是一种全局监测经典 PTP 氧化的方法。在这项研究中,我们提出了一种经过改进的 q-oxPTPome,其灵敏度提高了 >10 倍。将 q-oxPTPome 应用于 FH 缺陷型细胞模型表明,多种 PTP 要么高度氧化(包括 PTPN12),要么过度表达。高度氧化的 PTP 是那些对外源性 HO 相对敏感的 PTP。FH 缺陷型细胞中几乎 40%的 PTPN13 被不可逆地氧化为磺酸状态。使用底物捕获突变体,我们将 PTP 映射到它们的假定底物上,发现只有 PTPN12 可以靶向 ABL1。此外,敲低实验确定 PTPN12 是 ABL1 的主要磷酸酶,并且 PTPN12 的过表达抑制了 ABL1 的磷酸化和 HLRCC 细胞的生长。这些结果表明,ROS 诱导的 PTPN12 氧化导致 HLRCC 相关 PRCC 中的 ABL1 磷酸化,揭示了一种使肿瘤抑制基因产物失活的新机制,并在病理性 PTP 氧化和肿瘤疾病之间建立了直接联系。意义:这项工作确定了一种通过 ROS 诱导的、氧化介导的同源蛋白酪氨酸磷酸酶失活来激活致癌激酶 ABL1 的新机制。