Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
Operations Management and Quantitative, Techniques Area at the Indian Institute of Management, Indore, India.
Sci Rep. 2018 Oct 8;8(1):14924. doi: 10.1038/s41598-018-32682-x.
Personalized (patient-specific) approaches have recently emerged with a precision medicine paradigm that acknowledges the fact that molecular pathway structures and activity might be considerably different within and across tumors. The functional cancer genome and proteome provide rich sources of information to identify patient-specific variations in signaling pathways and activities within and across tumors; however, current analytic methods lack the ability to exploit the diverse and multi-layered architecture of these complex biological networks. We assessed pan-cancer pathway activities for >7700 patients across 32 tumor types from The Cancer Proteome Atlas by developing a personalized cancer-specific integrated network estimation (PRECISE) model. PRECISE is a general Bayesian framework for integrating existing interaction databases, data-driven de novo causal structures, and upstream molecular profiling data to estimate cancer-specific integrated networks, infer patient-specific networks and elicit interpretable pathway-level signatures. PRECISE-based pathway signatures, can delineate pan-cancer commonalities and differences in proteomic network biology within and across tumors, demonstrates robust tumor stratification that is both biologically and clinically informative and superior prognostic power compared to existing approaches. Towards establishing the translational relevance of the functional proteome in research and clinical settings, we provide an online, publicly available, comprehensive database and visualization repository of our findings ( https://mjha.shinyapps.io/PRECISE/ ).
个性化(患者特异性)方法最近出现了,其以精准医学范式为基础,承认分子途径结构和活性在肿瘤内和肿瘤间可能有很大差异。功能性癌症基因组和蛋白质组为识别肿瘤内和肿瘤间信号通路和活性的患者特异性变化提供了丰富的信息来源;然而,当前的分析方法缺乏利用这些复杂生物网络的多样和多层次结构的能力。我们通过开发个性化癌症特异性综合网络估计(PRECISE)模型,评估了来自癌症蛋白质组图谱的 32 种肿瘤类型中超过 7700 名患者的泛癌途径活性。PRECISE 是一个通用的贝叶斯框架,用于整合现有的相互作用数据库、数据驱动的从头因果结构和上游分子分析数据,以估计癌症特异性综合网络、推断患者特异性网络并引出可解释的途径级签名。基于 PRECISE 的途径签名可以描绘肿瘤内和肿瘤间蛋白质组网络生物学的泛癌共性和差异,证明了强大的肿瘤分层,具有生物学和临床意义,并优于现有方法的预后能力。为了在研究和临床环境中建立功能蛋白质组的转化相关性,我们提供了一个在线的、公开的、全面的数据库和可视化存储库,其中包含了我们的发现(https://mjha.shinyapps.io/PRECISE/)。