University of Southern California Stevens Neuroimaging and Informatics Institute, Center for Integrated Connectomics (CIC), Keck School of Medicine of University of Southern California, Los Angeles, CA, USA.
Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA.
Nat Neurosci. 2018 Nov;21(11):1628-1643. doi: 10.1038/s41593-018-0241-y. Epub 2018 Oct 8.
Understanding the organization of the hippocampus is fundamental to understanding brain function related to learning, memory, emotions, and diseases such as Alzheimer's disease. Physiological studies in humans and rodents have suggested that there is both structural and functional heterogeneity along the longitudinal axis of the hippocampus. However, the recent discovery of discrete gene expression domains in the mouse hippocampus has provided the opportunity to re-evaluate hippocampal connectivity. To integrate mouse hippocampal gene expression and connectivity, we mapped the distribution of distinct gene expression patterns in mouse hippocampus and subiculum to create the Hippocampus Gene Expression Atlas (HGEA). Notably, previously unknown subiculum gene expression patterns revealed a hidden laminar organization. Guided by the HGEA, we constructed the most detailed hippocampal connectome available using Mouse Connectome Project ( http://www.mouseconnectome.org ) tract tracing data. Our results define the hippocampus' multiscale network organization and elucidate each subnetwork's unique brain-wide connectivity patterns.
理解海马体的组织结构对于理解与学习、记忆、情感以及阿尔茨海默病等疾病相关的大脑功能至关重要。人类和啮齿动物的生理学研究表明,海马体的纵轴具有结构和功能的异质性。然而,最近在小鼠海马体中发现离散的基因表达域为重新评估海马体连接提供了机会。为了整合小鼠海马体的基因表达和连接,我们将小鼠海马体和下托区中不同基因表达模式的分布进行映射,以创建海马体基因表达图谱(HGEA)。值得注意的是,先前未知的下托区基因表达模式揭示了隐藏的层状组织。我们以 HGEA 为指导,使用 Mouse Connectome Project(http://www.mouseconnectome.org)的示踪数据构建了目前最详细的海马连接组。我们的研究结果定义了海马体的多尺度网络组织,并阐明了每个子网独特的全脑连接模式。