Suppr超能文献

3-碘甲腺原氨酸胺激活小鼠下丘脑细胞系中的一组膜蛋白。

3-Iodothyronamine Activates a Set of Membrane Proteins in Murine Hypothalamic Cell Lines.

作者信息

Bräunig Julia, Mergler Stefan, Jyrch Sabine, Hoefig Carolin S, Rosowski Mark, Mittag Jens, Biebermann Heike, Khajavi Noushafarin

机构信息

Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.

Institute of Experimental Pediatric Endocrinology, Berlin, Germany.

出版信息

Front Endocrinol (Lausanne). 2018 Sep 11;9:523. doi: 10.3389/fendo.2018.00523. eCollection 2018.

Abstract

3-Iodothyronamine (3-TAM) is an endogenous thyroid hormone metabolite. The profound pharmacological effects of 3-TAM on energy metabolism and thermal homeostasis have raised interest to elucidate its signaling properties in tissues that pertain to metabolic regulation and thermogenesis. Previous studies identified G protein-coupled receptors (GPCRs) and transient receptor potential channels (TRPs) as targets of 3-TAM in different cell types. These two superfamilies of membrane proteins are largely expressed in tissue which influences energy balance and metabolism. As the first indication that 3-TAM virtually modulates the function of the neurons in hypothalamus, we observed that intraperitoneal administration of 50 mg/kg bodyweight of 3-TAM significantly increased the c-FOS activation in the paraventricular nucleus (PVN) of C57BL/6 mice. To elucidate the underlying mechanism behind this 3-TAM-induced signalosome, we used three different murine hypothalamic cell lines, which are all known to express PVN markers, GT1-7, mHypoE-N39 (N39) and mHypoE-N41 (N41). Various aminergic GPCRs, which are the known targets of 3-TAM, as well as numerous members of TRP channel superfamily, are expressed in these cell lines. Effects of 3-TAM on activation of GPCRs were tested for the two major signaling pathways, the action of Gα/adenylyl cyclase and G. Here, we demonstrated that this thyroid hormone metabolite has no significant effect on G signaling and only a minor effect on the Gα/adenylyl cyclase pathway, despite the expression of known GPCR targets of 3-TAM. Next, to test for other potential mechanisms involved in 3-TAM-induced c-FOS activation in PVN, we evaluated the effect of 3-TAM on the intracellular Ca concentration and whole-cell currents. The fluorescence-optic measurements showed a significant increase of intracellular Ca concentration in the three cell lines in the presence of 10 μM 3-TAM. Furthermore, this thyroid hormone metabolite led to an increase of whole-cell currents in N41 cells. Interestingly, the TRPM8 selective inhibitor (10 μM AMTB) reduced the 3-TAM stimulatory effects on cytosolic Ca and whole-cell currents. Our results suggest that the profound pharmacological effects of 3-TAM on selected brain nuclei of murine hypothalamus, which are known to be involved in energy metabolism and thermoregulation, might be partially attributable to TRP channel activation in hypothalamic cells.

摘要

3-碘甲腺原氨酸(3-TAM)是一种内源性甲状腺激素代谢产物。3-TAM对能量代谢和热稳态具有深远的药理作用,这引发了人们对阐明其在与代谢调节和产热相关组织中的信号特性的兴趣。先前的研究确定G蛋白偶联受体(GPCRs)和瞬时受体电位通道(TRPs)是3-TAM在不同细胞类型中的作用靶点。这两个膜蛋白超家族在很大程度上表达于影响能量平衡和代谢的组织中。作为3-TAM实际上调节下丘脑神经元功能的首个迹象,我们观察到腹腔注射50mg/kg体重的3-TAM可显著增加C57BL/6小鼠室旁核(PVN)中的c-FOS激活。为了阐明这种3-TAM诱导的信号体背后的潜在机制,我们使用了三种不同的小鼠下丘脑细胞系,它们都已知表达PVN标志物,即GT1-7、mHypoE-N39(N39)和mHypoE-N41(N41)。各种胺能GPCRs,即3-TAM的已知作用靶点,以及TRP通道超家族的众多成员,都在这些细胞系中表达。针对GPCRs激活的两条主要信号通路,即Gα/腺苷酸环化酶和G的作用,测试了3-TAM的影响。在此,我们证明这种甲状腺激素代谢产物对G信号没有显著影响,对Gα/腺苷酸环化酶途径只有轻微影响,尽管存在3-TAM的已知GPCR靶点。接下来,为了测试参与3-TAM诱导PVN中c-FOS激活的其他潜在机制,我们评估了3-TAM对细胞内Ca浓度和全细胞电流的影响。荧光光学测量显示,在存在10μM 3-TAM的情况下,三种细胞系中的细胞内Ca浓度显著增加。此外,这种甲状腺激素代谢产物导致N41细胞中的全细胞电流增加。有趣的是,TRPM8选择性抑制剂(10μM AMTB)降低了3-TAM对细胞溶质Ca和全细胞电流的刺激作用。我们的结果表明,3-TAM对小鼠下丘脑选定脑核具有深远的药理作用,这些脑核已知参与能量代谢和体温调节,这可能部分归因于下丘脑细胞中TRP通道的激活。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57e2/6161562/6db7d6cb8857/fendo-09-00523-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验