Savchenkova Anna S, Semenikhin Alexander S, Chechet Ivan V, Matveev Sergey G, Konnov Alexander A, Mebel Alexander M
Samara National Research University, Samara 443086, Russia.
Division of Combustion Physics, Department of Physics, Lund University, S-221 00, Lund, Sweden.
J Comput Chem. 2019 Jan 15;40(2):387-399. doi: 10.1002/jcc.25613. Epub 2018 Oct 9.
Ab initio and density functional CCSD(T)-F12/cc-pVQZ-f12//B2PLYPD3/6-311G** calculations have been performed to unravel the reaction mechanism of triplet and singlet methylene CH with ketene CH CO. The computed potential energy diagrams and molecular properties have been then utilized in Rice-Ramsperger-Kassel-Marcus-Master Equation (RRKM-ME) calculations of the reaction rate constants and product branching ratios combined with the use of nonadiabatic transition state theory for spin-forbidden triplet-singlet isomerization. The results indicate that the most important channels of the reaction of ketene with triplet methylene lead to the formation of the HCCO + CH and C H + CO products, where the former channel is preferable at higher temperatures from 1000 K and above. In the C H + CO product pair, the ethylene molecule can be formed either adiabatically in the triplet electronic state or via triplet-singlet intersystem crossing in the singlet electronic state occurring in the vicinity of the CH COCH intermediate or along the pathway of CO elimination from the initial CH CH CO complex. The predominant products of the reaction of ketene with singlet methylene have been shown to be C H + CO. The formation of these products mostly proceeds via a well-skipping mechanism but at high pressures may to some extent involve collisional stabilization of the CH CHCO and cyclic CH COCH intermediates followed by their thermal unimolecular decomposition. The calculated rate constants at different pressures from 0.01 to 100 atm have been fitted by the modified Arrhenius expressions in the temperature range of 300-3000 K, which are proposed for kinetic modeling of ketene reactions in combustion. © 2018 Wiley Periodicals, Inc.
已进行从头算和密度泛函CCSD(T)-F12/cc-pVQZ-f12//B2PLYPD3/6-311G**计算,以阐明三重态和单重态亚甲基CH与乙烯酮CH₂CO的反应机理。然后,计算得到的势能图和分子性质被用于结合使用非绝热过渡态理论进行自旋禁阻的三重态-单重态异构化的反应速率常数和产物分支比的赖斯-拉姆施泰格-卡塞尔-马库斯-主方程(RRKM-ME)计算。结果表明,乙烯酮与三重态亚甲基反应的最重要通道导致形成HCCO + CH和C₂H₂ + CO产物,其中前一个通道在1000 K及以上的较高温度下更占优势。在C₂H₂ + CO产物对中,乙烯分子可以在三重态电子态下绝热形成,或者通过在CH₂COCH中间体附近或沿着从初始CH₂CH₂CO络合物消除CO的途径发生的单重态电子态下的三重态-单重态系间窜越形成。乙烯酮与单重态亚甲基反应的主要产物已被证明是C₂H₂ + CO。这些产物的形成主要通过跳阱机制进行,但在高压下可能在一定程度上涉及CH₂CHCO和环状CH₂COCH中间体的碰撞稳定化,随后它们进行热单分子分解。在300 - 3000 K的温度范围内,已用修正的阿伦尼乌斯表达式拟合了在0.01至100 atm不同压力下计算得到的速率常数,这些表达式被提议用于燃烧中乙烯酮反应的动力学建模。© 2018威利期刊公司。