Xu Boyang, Garrec Julian, Nicolle André, Matrat Mickaël, Catoire Laurent
Unité Chimie et Procédés (UCP) , ENSTA ParisTech , 828 Boulevard des Maréchaux , 91120 Palaiseau , France.
IFP Energies nouvelles (IFPEN) , 1 et 4 avenue de Bois-Préau , 92852 Rueil-Malmaison , France.
J Phys Chem A. 2019 Apr 4;123(13):2483-2496. doi: 10.1021/acs.jpca.8b11273. Epub 2019 Mar 25.
The reaction of ketene with hydroxyl radical is drawing growing attention, for it is found to constitute an important step during the combustion of hydrocarbon and oxygenated hydrocarbon fuels, e.g., acetylene, propyne, allene, acetone, gasoline, diesel, jet fuels, and biofuels. We studied the potential energy surface (PES) of this reaction using B2PLYP-D3/cc-PVTZ for geometry optimization and composite methods based on CCSD(T)-F12/cc-PVTZ-F12 for energy calculations. From this PES, temperature- and pressure-dependent rate coefficients and branching ratios at 200-3000 K and 0.01-100 atm were derived using the RRKM/ME approach. The reaction is dominated by four product channels: (i) OH addition on the olefinic carbon of ketene to form CHOH + CO, which is the most dominant under all conditions; (ii) H abstraction producing HCCO + HO, which is favored at high temperatures; (iii) OH addition on the carbonyl carbon to form CH + CO, which is favored at low pressures and high temperatures; and (iv) collisional stabilization of CHCOOH, which is favored at high pressures and low temperatures. With increasing temperatures, the overall rate constant k exhibit first negative but then positive temperature dependency, with its switching point (also the minimum point) at ∼400 K. Both product channel CHOH + CO and HCCO + HO are independent of pressure, whereas formation of CH + CO and collisional stabilization of CHCOOH are highly pressure dependent. Fitted modified Arrhenius expressions of the calculated rate constants are provided for the purpose of combustion modeling.
乙烯酮与羟基自由基的反应正受到越来越多的关注,因为人们发现它是碳氢化合物和含氧碳氢燃料(如乙炔、丙炔、丙二烯、丙酮、汽油、柴油、喷气燃料和生物燃料)燃烧过程中的一个重要步骤。我们使用B2PLYP-D3/cc-PVTZ进行几何优化,并基于CCSD(T)-F12/cc-PVTZ-F12的复合方法进行能量计算,研究了该反应的势能面(PES)。根据这个PES,使用RRKM/ME方法推导了200 - 3000 K和0.01 - 100 atm下与温度和压力相关的速率系数和分支比。该反应由四个产物通道主导:(i)羟基加成到乙烯酮的烯碳上形成CHOH + CO,在所有条件下这是最主要的通道;(ii)氢原子提取生成HCCO + HO,在高温下更有利;(iii)羟基加成到羰基碳上形成CH + CO,在低压和高温下更有利;(iv)CHCOOH的碰撞稳定化,在高压和低温下更有利。随着温度升高,总速率常数k首先呈现负温度依赖性,然后呈现正温度依赖性,其转折点(也是最低点)约在400 K。产物通道CHOH + CO和HCCO + HO都与压力无关,而CH + CO的形成和CHCOOH的碰撞稳定化则高度依赖于压力。为了燃烧建模的目的,提供了计算速率常数的拟合修正阿伦尼乌斯表达式。