Suppr超能文献

CFSH:用于篮推荐的序列和历史购买数据的因子分解。

CFSH: Factorizing sequential and historical purchase data for basket recommendation.

机构信息

Computer Science, Beijing University of Posts and Telecommunications, Beijing, China.

Institute of Remote sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China.

出版信息

PLoS One. 2018 Oct 10;13(10):e0203191. doi: 10.1371/journal.pone.0203191. eCollection 2018.

Abstract

To predict what products customers will buy in next transaction is an important task. Existing work in next-basket prediction can be summarized into two paradigms. One is the item-centric paradigm, where sequential patterns are mined from customers' transactional data and leveraged for prediction. However, these approaches usually suffer from the data sparseness problem. The other is the user-centric paradigm, where collaborative filtering techniques have been applied on customers' historical data. However, these methods ignore the sequential behaviors of customers which is often crucial for next-basket prediction. In this paper, we introduce a hybrid method, namely the Co-Factorization model over Sequential and Historical purchase data (CFSH for short) for next-basket recommendation. Compared with existing methods, our approach conveys the following merits: 1) By mining global sequential patterns, we can avoid the sparseness problem in traditional item-centric methods; 2) By factorizing product-product and customer-product matrices simultaneously, we can fully exploit both sequential and historical behaviors to learn customer and product representations better; 3) By using a hybrid recommendation method, we can achieve better performance in next-basket prediction. Experimental results on three real-world purchase datasets demonstrated the effectiveness of our approach as compared with the state-of-the-art methods.

摘要

预测顾客在下一次交易中会购买什么产品是一项重要任务。现有的下一个购物篮预测工作可以总结为两种范式。一种是基于项目的范式,从顾客的交易数据中挖掘出顺序模式,并利用这些模式进行预测。然而,这些方法通常会受到数据稀疏性问题的困扰。另一种是基于用户的范式,在用户的历史数据上应用协同过滤技术。然而,这些方法忽略了顾客的顺序行为,而这对于下一个购物篮预测通常是至关重要的。在本文中,我们引入了一种混合方法,即基于顺序和历史购买数据的协同分解模型(简称 CFSH),用于下一个购物篮推荐。与现有的方法相比,我们的方法具有以下优点:1)通过挖掘全局顺序模式,我们可以避免传统基于项目的方法中的稀疏性问题;2)通过同时分解产品-产品和顾客-产品矩阵,我们可以充分利用顺序和历史行为来更好地学习顾客和产品表示;3)通过使用混合推荐方法,我们可以在下次购物篮预测中获得更好的性能。在三个真实购买数据集上的实验结果表明,与现有方法相比,我们的方法是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f036/6179207/ffdfb0802440/pone.0203191.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验