Peng Bo, Ren Zhiyun, Parthasarathy Srinivasan, Ning Xia
Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210 USA.
Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210 USA.
IEEE Trans Knowl Data Eng. 2023 Apr;35(4):4033-4046. doi: 10.1109/tkde.2022.3142773. Epub 2022 Jan 13.
Next-basket recommendation considers the problem of recommending a set of items into the next basket that users will purchase as a whole. In this paper, we develop a novel mixed model with preferences, popularities and transitions (M) for the next-basket recommendation. This method models three important factors in next-basket generation process: 1) users' general preferences, 2) items' global popularities and 3) transition patterns among items. Unlike existing recurrent neural network-based approaches, M does not use the complicated networks to model the transitions among items, or generate embeddings for users. Instead, it has a simple encoder-decoder based approach (ed-Trans) to better model the transition patterns among items. We compared M with different combinations of the factors with 5 state-of-the-art next-basket recommendation methods on 4 public benchmark datasets in recommending the first, second and third next basket. Our experimental results demonstrate that M significantly outperforms the state-of-the-art methods on all the datasets in all the tasks, with an improvement of up to 22.1%. In addition, our ablation study demonstrates that the ed-Trans is more effective than recurrent neural networks in terms of the recommendation performance. We also have a thorough discussion on various experimental protocols and evaluation metrics for next-basket recommendation evaluation.
下一购物篮推荐考虑的是推荐一组用户将作为一个整体购买的、放入下一个购物篮中的商品的问题。在本文中,我们为下一购物篮推荐开发了一种新颖的偏好、流行度和转移混合模型(M)。该方法对下一购物篮生成过程中的三个重要因素进行建模:1)用户的一般偏好,2)商品的全局流行度,以及3)商品之间的转移模式。与现有的基于循环神经网络的方法不同,M不使用复杂的网络来对商品之间的转移进行建模,也不为用户生成嵌入。相反,它采用了一种基于简单编码器-解码器的方法(ed-Trans)来更好地对商品之间的转移模式进行建模。我们在4个公共基准数据集上,将M与不同因素组合的方法以及5种最先进的下一购物篮推荐方法进行比较,以推荐第一、第二和第三个下一购物篮。我们的实验结果表明,在所有数据集的所有任务中,M均显著优于最先进的方法,提升幅度高达22.1%。此外,我们的消融研究表明,就推荐性能而言,ed-Trans比循环神经网络更有效。我们还对下一购物篮推荐评估的各种实验协议和评估指标进行了深入讨论。