Inbar L, Lapidot A
Eur J Biochem. 1987 Feb 2;162(3):621-33. doi: 10.1111/j.1432-1033.1987.tb10684.x.
The basic metabolic pathways of lysine biosynthesis in Brevibacterium flavum, a strain which excretes excessive amounts of L-lysine, have been followed by using two 13C-labeled precursors. 13C- and 1H-NMR spectroscopies in conjunction with gas chromatography mass spectrometry (GC-MS) have revealed the various metabolic pathways leading to L-[13C]lysine. Discrete metabolic pathways give rise to distinct labeling patterns. L-Lysine resulting from [1-13C]glucose fermentation is relatively specifically labeled: L-[3,5-13C]lysine is the main product. Experimental and theoretical approaches based on the 13C-enrichment values of intracellular glutamate, a major intermediate metabolite, allowed us to assess the relative contribution of the major metabolic pathways forming lysine. The labeling pattern of glutamate reflects the isotope distribution in 2-oxoglutarate. When [2-13C]acetate is used as the sole carbon source in the culture, the energy-producing steps of the Krebs cycle are essential. The higher activity of the Krebs cycle, when endogenous carbohydrates are exhausted from the culture, is indicated by the increased 13C enrichment in C-1 of lysine and reveal a high content of isotopomers of four, five and six 13C atoms in the lysine molecule, pointing out that the four-carbon intermediates of the cycle are being derived from the glyoxylate shunt pathway. Such a phenomenon does not occur in glucose fermentation. GC-MS analyses of 13C enrichments and isotopomer distributions in metabolites and end products are in good agreement with the predicted contribution of each metabolic pathway. This new methodological approach of combined NMR and GC-MS has been demonstrated to be applicable to various other metabolic studies.
利用两种13C标记的前体,对黄色短杆菌(一种分泌过量L-赖氨酸的菌株)中赖氨酸生物合成的基本代谢途径进行了追踪。13C和1H核磁共振光谱结合气相色谱-质谱联用(GC-MS)揭示了导致L-[13C]赖氨酸的各种代谢途径。不同的代谢途径产生不同的标记模式。由[1-13C]葡萄糖发酵产生的L-赖氨酸具有相对特异性的标记:L-[3,5-13C]赖氨酸是主要产物。基于细胞内主要中间代谢物谷氨酸的13C富集值的实验和理论方法,使我们能够评估形成赖氨酸的主要代谢途径的相对贡献。谷氨酸的标记模式反映了2-氧代戊二酸中的同位素分布。当[2-13C]乙酸盐用作培养物中的唯一碳源时,三羧酸循环的产能步骤至关重要。当培养物中的内源性碳水化合物耗尽时,三羧酸循环的较高活性通过赖氨酸C-1中13C富集的增加来表明,并揭示了赖氨酸分子中四个、五个和六个13C原子的同位素异构体的高含量,指出该循环的四碳中间体来自乙醛酸分流途径。这种现象在葡萄糖发酵中不会发生。对代谢物和终产物中13C富集和同位素异构体分布的GC-MS分析与每个代谢途径的预测贡献高度一致。这种结合核磁共振和GC-MS的新方法已被证明适用于各种其他代谢研究。