Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144, Torino, Italy; Centre for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Environment Park, Via Livorno 60, 10144, Torino, Italy.
ISALIT-Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy; Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy.
Plant Physiol Biochem. 2018 Nov;132:524-534. doi: 10.1016/j.plaphy.2018.10.002. Epub 2018 Oct 5.
Photoautotrophic growth of Synechocystis sp. PCC 6803 in a flat-panel photobioreactor, run in turbidostat mode under increasing intensities of orange-red light (636 nm), showed a maximal growth rate (0.12 h) at 300 μmol m s, whereas first signs of photoinhibition were detected above 800 μmol m s. To investigate the dynamic modulation of the thylakoid proteome in response to photoinhibitory light intensities, quantitative proteomics analyses by SWATH mass spectrometry were performed by comparing thylakoid membranes extracted from Synechocystis grown under low-intensity illumination (i.e. 50 μmol m s) with samples isolated from cells subjected to photoinhibitory light regimes (800, 950 and 1460 μmol m s). We identified and quantified 126 proteins with altered abundance in all three photoinhibitory illumination regimes. These data reveal the strategies by which Synechocystis responds to photoinibitory growth irradiances of orange-red light. The accumulation of core proteins of Photosystem II and reduction of oxygen-evolving-complex subunits in photoinhibited cells revealed a different turnover and repair rates of the integral and extrinsic Photosystem II subunits with variation of light intensity. Furthermore, Synechocystis displayed a differentiated response to photoinhibitory regimes also regarding Photosystem I: the amount of PsaD, PsaE, PsaJ and PsaM subunits decreased, while there was an increased abundance of the PsaA, PsaB, Psak2 and PsaL proteins. Photoinhibition with 636 nm light also elicited an increased capacity for cyclic electron transport, a lowering of the amount of phycobilisomes and an increase of the orange carotenoid protein content, all presumably as a photoprotective mechanism against the generation of reactive oxygen species.
聚球藻 PCC 6803 在平板光生物反应器中的光自养生长,在橙红光(636nm)强度不断增加的条件下以浊度计模式运行,在 300μmol m s 时表现出最大生长速率(0.12h),而在 800μmol m s 以上则首次检测到光抑制迹象。为了研究类囊体蛋白在应对光抑制光强时的动态调节,通过比较在低强度光照(即 50μmol m s)下生长的聚球藻和处于光抑制光照条件(800、950 和 1460μmol m s)下的细胞分离的类囊体膜,通过 SWATH 质谱进行了定量蛋白质组学分析。我们在所有三种光抑制光照条件下鉴定和定量了 126 种丰度发生变化的蛋白质。这些数据揭示了聚球藻对橙红光光抑制生长辐照度的响应策略。在光抑制细胞中,光合系统 II 核心蛋白的积累和放氧复合物亚基的减少表明,在光强变化时,完整和外在光合系统 II 亚基的周转率和修复率不同。此外,聚球藻对光抑制条件也表现出不同的反应:与 PSaD、PSaE、PSaJ 和 PSaM 亚基相比,PSaA、PSaB、Psak2 和 PsaL 蛋白的含量增加,而 PSaD、PSaE、PSaJ 和 PSaM 亚基的含量减少。636nm 光的光抑制也引起了循环电子传递能力的增加、藻胆体数量的降低和橙色类胡萝卜素蛋白含量的增加,所有这些可能都是作为一种对活性氧产生的光保护机制。