The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, School of Pharmacy, University of Washington, Seattle, WA (AB).
Department of Biostatistics, University of Washington, Seattle, WA (PJH).
Med Decis Making. 2018 Nov;38(8):904-916. doi: 10.1177/0272989X18801312. Epub 2018 Oct 14.
Many medical decisions involve the use of dynamic information collected on individual patients toward predicting likely transitions in their future health status. If accurate predictions are developed, then a prognostic model can identify patients at greatest risk for future adverse events and may be used clinically to define populations appropriate for targeted intervention. In practice, a prognostic model is often used to guide decisions at multiple time points over the course of disease, and classification performance (i.e., sensitivity and specificity) for distinguishing high-risk v. low-risk individuals may vary over time as an individual's disease status and prognostic information change. In this tutorial, we detail contemporary statistical methods that can characterize the time-varying accuracy of prognostic survival models when used for dynamic decision making. Although statistical methods for evaluating prognostic models with simple binary outcomes are well established, methods appropriate for survival outcomes are less well known and require time-dependent extensions of sensitivity and specificity to fully characterize longitudinal biomarkers or models. The methods we review are particularly important in that they allow for appropriate handling of censored outcomes commonly encountered with event time data. We highlight the importance of determining whether clinical interest is in predicting cumulative (or prevalent) cases over a fixed future time interval v. predicting incident cases over a range of follow-up times and whether patient information is static or updated over time. We discuss implementation of time-dependent receiver operating characteristic approaches using relevant R statistical software packages. The statistical summaries are illustrated using a liver prognostic model to guide transplantation in primary biliary cirrhosis.
许多医学决策都涉及使用针对个体患者收集的动态信息来预测其未来健康状况的可能转变。如果能够做出准确的预测,那么预后模型可以识别出未来发生不良事件风险最高的患者,并可用于临床定义适合靶向干预的人群。在实践中,预后模型通常用于指导疾病过程中多个时间点的决策,并且区分高危和低危个体的分类性能(即敏感性和特异性)可能会随着个体疾病状态和预后信息的变化而随时间变化。在本教程中,我们详细介绍了可用于描述用于动态决策的预后生存模型的时间变化准确性的现代统计方法。尽管用于评估具有简单二分类结果的预后模型的统计方法已经成熟,但适用于生存结果的方法却鲜为人知,并且需要对敏感性和特异性进行时间依赖性扩展,以充分描述纵向生物标志物或模型。我们回顾的方法特别重要,因为它们允许适当处理事件时间数据中常见的删失结果。我们强调确定临床关注点是预测固定未来时间间隔内的累积(或流行)病例,还是预测一系列随访时间内的新发病例,以及患者信息是静态的还是随时间更新的重要性。我们讨论了使用相关的 R 统计软件包实现时间依赖性接收者操作特征方法。使用原发性胆汁性肝硬化的肝脏预后模型来说明统计摘要,以指导肝移植。