Saha P, Heagerty P J
Department of Biostatistics, University of Washington, Seattle, Washington 98195-7232, USA.
Biometrics. 2010 Dec;66(4):999-1011. doi: 10.1111/j.1541-0420.2009.01375.x.
Competing risks arise naturally in time-to-event studies. In this article, we propose time-dependent accuracy measures for a marker when we have censored survival times and competing risks. Time-dependent versions of sensitivity or true positive (TP) fraction naturally correspond to consideration of either cumulative (or prevalent) cases that accrue over a fixed time period, or alternatively to incident cases that are observed among event-free subjects at any select time. Time-dependent (dynamic) specificity (1-false positive (FP)) can be based on the marker distribution among event-free subjects. We extend these definitions to incorporate cause of failure for competing risks outcomes. The proposed estimation for cause-specific cumulative TP/dynamic FP is based on the nearest neighbor estimation of bivariate distribution function of the marker and the event time. On the other hand, incident TP/dynamic FP can be estimated using a possibly nonproportional hazards Cox model for the cause-specific hazards and riskset reweighting of the marker distribution. The proposed methods extend the time-dependent predictive accuracy measures of Heagerty, Lumley, and Pepe (2000, Biometrics 56, 337-344) and Heagerty and Zheng (2005, Biometrics 61, 92-105).
竞争风险在生存时间研究中自然出现。在本文中,当我们有删失的生存时间和竞争风险时,我们提出了标记物的时间依存性准确性度量。敏感性或真阳性(TP)率的时间依存版本自然对应于对在固定时间段内累积(或现患)病例的考虑,或者对应于在任何选定时间在无事件受试者中观察到的新发病例。时间依存性(动态)特异性(1-假阳性(FP))可以基于无事件受试者中的标记物分布。我们扩展这些定义以纳入竞争风险结局的失败原因。针对特定原因的累积TP/动态FP的拟议估计基于标记物和事件时间的二元分布函数的最近邻估计。另一方面,可以使用针对特定原因风险的可能非比例风险Cox模型和标记物分布的风险集重加权来估计新发病例TP/动态FP。所提出的方法扩展了Heagerty、Lumley和Pepe(2000年,《生物统计学》56卷,337 - 344页)以及Heagerty和Zheng(2005年,《生物统计学》61卷,92 - 105页)的时间依存性预测准确性度量。