Suppr超能文献

基于结构的潜在天然产物化学型作为大麻素受体 1 反向激动剂的鉴定。

Structure-Based Identification of Potent Natural Product Chemotypes as Cannabinoid Receptor 1 Inverse Agonists.

机构信息

Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, The University of Mississippi, MS 38677, USA.

National Institute of Pharmaceutical Education and Research, 168, Manicktala Main Road, Kolkata 700054, WB, India.

出版信息

Molecules. 2018 Oct 13;23(10):2630. doi: 10.3390/molecules23102630.

Abstract

Natural products are an abundant source of potential drugs, and their diversity makes them a rich and viable prospective source of bioactive cannabinoid ligands. Cannabinoid receptor 1 (CB1) antagonists are clinically established and well documented as potential therapeutics for treating obesity, obesity-related cardiometabolic disorders, pain, and drug/substance abuse, but their associated CNS-mediated adverse effects hinder the development of potential new drugs and no such drug is currently on the market. This limitation amplifies the need for new agents with reduced or no CNS-mediated side effects. We are interested in the discovery of new natural product chemotypes as CB1 antagonists, which may serve as good starting points for further optimization towards the development of CB1 therapeutics. In search of new chemotypes as CB1 antagonists, we screened the in silico purchasable natural products subset of the ZINC12 database against our reported CB1 receptor model using the structure-based virtual screening (SBVS) approach. A total of 18 out of 192 top-scoring virtual hits, selected based on structural diversity and key protein⁻ligand interactions, were purchased and subjected to in vitro screening in competitive radioligand binding assays. The in vitro screening yielded seven compounds exhibiting >50% displacement at 10 μM concentration, and further binding affinity (K and IC) and functional data revealed compound as a potent and selective CB1 inverse agonist (K = 121 nM and EC = 128 nM) while three other compounds-, , and -were potent but nonselective CB1 ligands with low micromolar binding affinity (K). In order to explore the structure⁻activity relationship for compound , we further purchased compounds with >80% similarity to compound , screened them for CB1 and CB2 activities, and found two potent compounds with sub-micromolar activities. Most importantly, these bioactive compounds represent structurally new natural product chemotypes in the area of cannabinoid research and could be considered for further structural optimization as CB1 ligands.

摘要

天然产物是潜在药物的丰富来源,其多样性使它们成为生物活性大麻素配体的丰富而可行的潜在来源。大麻素受体 1 (CB1) 拮抗剂已在临床上确立,并被很好地记录为治疗肥胖症、肥胖相关的心脏代谢疾病、疼痛和药物/物质滥用的潜在疗法,但它们与中枢神经系统相关的不良反应会阻碍潜在新药的开发,目前没有此类药物在市场上销售。这一限制加剧了对具有减少或没有中枢神经系统介导的副作用的新型药物的需求。我们对发现新的天然产物化学型作为 CB1 拮抗剂很感兴趣,这些化学型可能成为进一步优化开发 CB1 治疗药物的良好起点。为了寻找新的 CB1 拮抗剂的化学型,我们使用基于结构的虚拟筛选 (SBVS) 方法,对我们报道的 CB1 受体模型筛选了 ZINC12 数据库中可购买的天然产物子集。根据结构多样性和关键蛋白-配体相互作用,总共从 192 个得分最高的虚拟命中中选择了 18 个进行体外筛选,以竞争性放射配体结合测定法进行筛选。体外筛选得到了 7 种在 10 μM 浓度下显示出 >50%置换的化合物,进一步的结合亲和力 (K 和 IC) 和功能数据表明化合物 是一种有效的、选择性的 CB1 反向激动剂 (K = 121 nM 和 EC = 128 nM),而另外 3 种化合物-、-和 -则是具有低微摩尔结合亲和力的有效但非选择性的 CB1 配体 (K)。为了探索化合物 的结构-活性关系,我们进一步购买了与化合物 相似度 >80%的化合物,并对它们进行了 CB1 和 CB2 活性筛选,发现了两种具有亚微摩尔活性的有效化合物。最重要的是,这些生物活性化合物代表了大麻素研究领域中结构新颖的天然产物化学型,可以考虑进一步作为 CB1 配体进行结构优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f6b/6222380/83373273b430/molecules-23-02630-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验