Suppr超能文献

计算机辅助药物设计与新型精神神经类药物

Computer-Aided Drug Design towards New Psychotropic and Neurological Drugs.

机构信息

Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.

Brain and Mind Centre, The University of Sydney, Camperdown, NSW 2050, Australia.

出版信息

Molecules. 2023 Jan 30;28(3):1324. doi: 10.3390/molecules28031324.

Abstract

Central nervous system (CNS) disorders are a therapeutic area in drug discovery where demand for new treatments greatly exceeds approved treatment options. This is complicated by the high failure rate in late-stage clinical trials, resulting in exorbitant costs associated with bringing new CNS drugs to market. Computer-aided drug design (CADD) techniques minimise the time and cost burdens associated with drug research and development by ensuring an advantageous starting point for pre-clinical and clinical assessments. The key elements of CADD are divided into ligand-based and structure-based methods. Ligand-based methods encompass techniques including pharmacophore modelling and quantitative structure activity relationships (QSARs), which use the relationship between biological activity and chemical structure to ascertain suitable lead molecules. In contrast, structure-based methods use information about the binding site architecture from an established protein structure to select suitable molecules for further investigation. In recent years, deep learning techniques have been applied in drug design and present an exciting addition to CADD workflows. Despite the difficulties associated with CNS drug discovery, advances towards new pharmaceutical treatments continue to be made, and CADD has supported these findings. This review explores various CADD techniques and discusses applications in CNS drug discovery from 2018 to November 2022.

摘要

中枢神经系统 (CNS) 疾病是药物发现领域的一个治疗领域,对新治疗方法的需求远远超过已批准的治疗方案。这一情况因晚期临床试验的高失败率而变得复杂,导致与将新的中枢神经系统药物推向市场相关的成本过高。计算机辅助药物设计 (CADD) 技术通过确保临床前和临床评估的有利起点,最大限度地减少了药物研究和开发相关的时间和成本负担。CADD 的关键要素分为基于配体和基于结构的方法。基于配体的方法包括药效团建模和定量构效关系 (QSAR) 等技术,这些技术利用生物活性和化学结构之间的关系来确定合适的先导分子。相比之下,基于结构的方法使用来自已建立的蛋白质结构的结合位点结构信息来选择适合进一步研究的分子。近年来,深度学习技术已应用于药物设计,为 CADD 工作流程带来了令人兴奋的补充。尽管中枢神经系统药物发现存在困难,但新的药物治疗方法的进展仍在继续,CADD 为这些发现提供了支持。本文综述了 2018 年至 2022 年 11 月期间 CADD 技术在中枢神经系统药物发现中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c3/9921936/4aac3e892fd3/molecules-28-01324-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验