Department of Biology, Pennsylvania State University, University Park, PA.
Medical Scientist Training Program, College of Medicine, Pennsylvania State University, Hershey, PA.
J Gen Physiol. 2018 Dec 3;150(12):1702-1721. doi: 10.1085/jgp.201812121. Epub 2018 Oct 15.
The Shaker-like family of voltage-gated K channels comprises four functionally independent gene subfamilies, Shaker (Kv1), Shab (Kv2), Shaw (Kv3), and Shal (Kv4), each of which regulates distinct aspects of neuronal excitability. Subfamily-specific assembly of tetrameric channels is mediated by the N-terminal T1 domain and segregates Kv1-4, allowing multiple channel types to function independently in the same cell. Typical Shaker-like Kv subunits can form functional channels as homotetramers, but a group of mammalian Kv2-related genes (Kv5.1, Kv6s, Kv8s, and Kv9s) encodes subunits that have a "silent" or "regulatory" phenotype characterized by T1 self-incompatibility. These channels are unable to form homotetramers, but instead heteromerize with Kv2.1 or Kv2.2 to diversify the functional properties of these delayed rectifiers. While T1 self-incompatibility predicts that these heterotetramers could contain up to two regulatory (R) subunits, experiments show a predominance of 3:1R stoichiometry in which heteromeric channels contain a single regulatory subunit. Substitution of the self-compatible Kv2.1 T1 domain into the regulatory subunit Kv6.4 does not alter the stoichiometry of Kv2.1:Kv6.4 heteromers. Here, to identify other channel structures that might be responsible for favoring the 3:1R stoichiometry, we compare the sequences of mammalian regulatory subunits to independently evolved regulatory subunits from cnidarians. The most widespread feature of regulatory subunits is the presence of atypical substitutions in the highly conserved consensus sequence of the intracellular S6 activation gate of the pore. We show that two amino acid substitutions in the S6 gate of the regulatory subunit Kv6.4 restrict the functional stoichiometry of Kv2.1:Kv6.4 to 3:1R by limiting the formation and function of 2:2R heteromers. We propose a two-step model for the evolution of the asymmetric 3:1R stoichiometry, which begins with evolution of self-incompatibility to establish the regulatory phenotype, followed by drift of the activation gate consensus sequence under relaxed selection to limit stoichiometry to 3:1R.
摇椅样电压门控钾通道家族由四个功能独立的基因亚家族组成,分别为 Shaker(Kv1)、Shab(Kv2)、Shaw(Kv3)和 Shal(Kv4),它们分别调节神经元兴奋性的不同方面。四聚体通道的亚家族特异性组装由 N 端 T1 结构域介导,并将 Kv1-4 分隔开,允许多种通道类型在同一细胞中独立发挥作用。典型的摇椅样 Kv 亚单位可以形成功能性同四聚体,但一组哺乳动物 Kv2 相关基因(Kv5.1、Kv6s、Kv8s 和 Kv9s)编码的亚单位具有“沉默”或“调节”表型,其特征是 T1 自身不兼容。这些通道不能形成同四聚体,而是与 Kv2.1 或 Kv2.2 异聚化,从而使这些延迟整流器的功能特性多样化。虽然 T1 自身不兼容性预测这些异四聚体可以包含多达两个调节(R)亚单位,但实验表明,在 3:1R 化学计量中,异聚体通道含有一个调节亚单位占主导地位。将自兼容的 Kv2.1 T1 结构域替换为调节亚单位 Kv6.4 不会改变 Kv2.1:Kv6.4 异聚体的化学计量。在这里,为了确定可能负责有利于 3:1R 化学计量的其他通道结构,我们将哺乳动物调节亚单位的序列与独立进化的刺胞动物调节亚单位进行比较。调节亚单位最广泛的特征是在孔的细胞内 S6 激活门的高度保守共识序列中存在非典型取代。我们表明,调节亚单位 Kv6.4 的 S6 门中的两个氨基酸取代通过限制 2:2R 异聚体的形成和功能,将 Kv2.1:Kv6.4 的功能化学计量限制为 3:1R。我们提出了一个两步模型来解释不对称 3:1R 化学计量的进化,该模型始于自身不兼容性的进化以建立调节表型,然后在放松选择下 S6 激活门共识序列的漂移将化学计量限制为 3:1R。