Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA.
EMBO J. 2018 Dec 3;37(23). doi: 10.15252/embj.201798772. Epub 2018 Oct 15.
Metabolic reprogramming has been described in rapidly growing tumors, which are thought to mostly contain fast-cycling cells (FCCs) that have impaired mitochondrial function and rely on aerobic glycolysis. Here, we characterize the metabolic landscape of glioblastoma (GBM) and explore metabolic specificities as targetable vulnerabilities. Our studies highlight the metabolic heterogeneity in GBM, in which FCCs harness aerobic glycolysis, and slow-cycling cells (SCCs) preferentially utilize mitochondrial oxidative phosphorylation for their functions. SCCs display enhanced invasion and chemoresistance, suggesting their important role in tumor recurrence. SCCs also demonstrate increased lipid contents that are specifically metabolized under glucose-deprived conditions. Fatty acid transport in SCCs is targetable by pharmacological inhibition or genomic deletion of FABP7, both of which sensitize SCCs to metabolic stress. Furthermore, FABP7 inhibition, whether alone or in combination with glycolysis inhibition, leads to overall increased survival. Our studies reveal the existence of GBM cell subpopulations with distinct metabolic requirements and suggest that FABP7 is central to lipid metabolism in SCCs and that targeting FABP7-related metabolic pathways is a viable therapeutic strategy.
代谢重编程已在快速生长的肿瘤中被描述,这些肿瘤被认为主要包含快速循环细胞 (FCCs),其线粒体功能受损,依赖有氧糖酵解。在这里,我们描述了神经胶质瘤 (GBM) 的代谢特征,并探讨了代谢特异性作为可靶向的脆弱性。我们的研究强调了 GBM 中的代谢异质性,其中 FCCs 利用有氧糖酵解,而慢循环细胞 (SCCs) 则优先利用线粒体氧化磷酸化来发挥功能。SCCs 表现出增强的侵袭性和化疗耐药性,这表明它们在肿瘤复发中具有重要作用。SCCs 还表现出增加的脂质含量,这些脂质在葡萄糖剥夺条件下会被特异性代谢。脂肪酸转运在 SCCs 中可被药物抑制或 FABP7 的基因组缺失靶向,这两种方法都能使 SCCs 对代谢应激敏感。此外,FABP7 抑制,无论是单独使用还是与糖酵解抑制联合使用,都能导致整体存活率提高。我们的研究揭示了具有不同代谢需求的 GBM 细胞亚群的存在,并表明 FABP7 是 SCCs 中脂质代谢的核心,靶向 FABP7 相关代谢途径是一种可行的治疗策略。