Rushin Anna, Shaikh Aleezeh, Hardin Callie, Deleyrolle Loic P, Merritt Matthew E
Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA.
Department of Molecular Medicine, Mayo Clinic, Jacksonville, FL, USA.
Sci Rep. 2025 May 28;15(1):18736. doi: 10.1038/s41598-025-02124-6.
Glioblastomas (GBM) are the most prevalent primary brain tumors, affecting 5 in every 100,000 people. GBMs optimize proliferation through adaptive cellular metabolism, frequently exploiting the Warburg effect by increasing aerobic glycolysis and glucose utilization to facilitate rapid cell growth. This disproportionate reliance on glucose has driven interest in using the ketogenic diet (KD) as a treatment for GBM. In this study, we explored metabolic flux in three primary human GBM cell samples using a media simulating a KD. Flux analysis using a detailed metabolic modeling approach revealed three unique metabolic phenotypes in the patient GBMs that correlated with cell viability. Notably, these phenotypes are apparent in the flux modeling, but were not evidenced by changes in the metabolite pool sizes. This variability in metabolic flux may underlie the inconsistent results observed in preclinical and clinical studies using the KD as a treatment paradigm.
胶质母细胞瘤(GBM)是最常见的原发性脑肿瘤,每10万人中就有5人受其影响。胶质母细胞瘤通过适应性细胞代谢来优化增殖,经常利用瓦伯格效应,增加有氧糖酵解和葡萄糖利用,以促进细胞快速生长。这种对葡萄糖的过度依赖引发了人们对使用生酮饮食(KD)治疗胶质母细胞瘤的兴趣。在本研究中,我们使用模拟生酮饮食的培养基,探索了三个原发性人类胶质母细胞瘤细胞样本中的代谢通量。使用详细代谢建模方法进行的通量分析揭示了患者胶质母细胞瘤中三种与细胞活力相关的独特代谢表型。值得注意的是,这些表型在通量建模中很明显,但代谢物池大小的变化并未证明这一点。代谢通量的这种变异性可能是在使用生酮饮食作为治疗模式的临床前和临床研究中观察到的结果不一致的原因。