Suppr超能文献

镍卟啉的光谱电化学研究表明,电催化 CO 和 H 还原的反应机制不同。

Spectroelectrochemical investigations of nickel cyclam indicate different reaction mechanisms for electrocatalytic CO and H reduction.

机构信息

Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Ave, Newman & Wolfrom Laboratory of Chemistry, Columbus, OH 43210, USA.

出版信息

Dalton Trans. 2018 Oct 30;47(42):15206-15216. doi: 10.1039/c8dt02873g.

Abstract

Rising levels of atmospheric carbon dioxide continue to motivate the development of catalysts that can efficiently convert CO2 to useful products in water without substantial amounts of H2 formed as a byproduct. In addition to synthetic efforts, mechanistic investigations on existing catalysts are necessary to understand the molecular factors contributing to activity and selectivity, which can guide rational improvements and increase catalyst robustness. [Ni(cyclam)]2+ (cyclam = 1,4,8,11-tetraazacyclotetradecane) is one such catalyst, known for decades to be capable of selective CO2 reduction to CO in water, but with little mechanistic information experimentally established or catalytic intermediates characterized. To better understand the mechanisms of aqueous H+ and CO2 reduction by [Ni(cyclam)]2+, spectroelectrochemical investigations were performed in conjunction with activity assays. Both large surface area glassy carbon and amorphous graphite rod working electrodes were tested, with the latter found to be significantly more active and selective for CO production. Optical, resonance Raman, and EPR spectroelectrochemical experiments on [Ni(cyclam)]2+ during catalysis under N2, CO2, and CO gases show the appearance of a single species, independent of electrode used. Identical signals are observed under oxidizing potentials. Spectroscopic and electrochemical analysis coupled with density functional theory calculations suggest that the signals observed originate from [Ni(cyclam)(H2PO4)]2+. The generation of a NiIII species under catalytic, reducing conditions suggests an ECCE mechanism for H+ reduction by [Ni(cyclam)]2+, which differs from the proton-coupled, ECEC pathway proposed for CO2 reduction. The divergent mechanisms seen for the two reactions may underlie the differential reactivity of [Ni(cyclam)]2+ towards each substrate, with implications for the design of increasingly selective molecular catalysts. This observation also highlights the substantial impact of buffer and electrode choice when characterizing and benchmarking the catalytic properties of new compounds.

摘要

大气中二氧化碳浓度的不断升高,促使人们开发能够在水中将 CO2 高效转化为有价值产物的催化剂,同时尽量避免生成大量副产物氢气。除了合成方面的努力,对现有催化剂的机理研究也是必要的,这有助于理解对活性和选择性有贡献的分子因素,从而指导合理的改进和提高催化剂的稳健性。[Ni(cyclam)]2+(cyclam = 1,4,8,11-四氮杂环十四烷)就是这样一种催化剂,它几十年来一直被认为能够在水中选择性地将 CO2 还原为 CO,但实际上对其催化机理的实验研究很少,也没有鉴定出催化中间体。为了更好地理解[Ni(cyclam)]2+在水相中的 H+和 CO2 还原机制,进行了光谱电化学研究,并结合活性测试。使用了大表面积的玻碳和无定形石墨棒工作电极进行测试,发现后者对 CO 生成具有更高的活性和选择性。在 N2、CO2 和 CO 气体下,对[Ni(cyclam)]2+进行的光学、共振拉曼和 EPR 光谱电化学实验表明,无论使用哪种电极,都只出现了一种单一的物种。在氧化电位下也观察到了相同的信号。光谱和电化学分析结合密度泛函理论计算表明,观察到的信号源于[Ni(cyclam)(H2PO4)]2+。在催化还原条件下生成 NiIII 物种表明,[Ni(cyclam)]2+还原 H+的机制为 ECCE,这与 CO2 还原提出的质子耦合 ECEC 途径不同。两种反应的机制不同,可能是导致[Ni(cyclam)]2+对两种底物的反应性不同的原因,这对设计越来越具有选择性的分子催化剂具有重要意义。这一观察结果还突出了在表征和基准测试新化合物的催化性能时,缓冲液和电极选择的重要影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验