Suppr超能文献

用于检测 SF₆ 分解成分的 Ni-CNT 化学传感器:实验与理论的综合研究。

Ni-CNT Chemical Sensor for SF₆ Decomposition Components Detection: A Combined Experimental and Theoretical Study.

机构信息

College of Engineering and Technology, Southwest University, Chongqing 400715, China.

School of Electrical Engineering, Wuhan University, Wuhan 430072, China.

出版信息

Sensors (Basel). 2018 Oct 16;18(10):3493. doi: 10.3390/s18103493.

Abstract

SF₆ decomposition components detection is a key technology to evaluate and diagnose the insulation status of SF₆-insulated equipment online, especially when insulation defects-induced discharge occurs in equipment. In order to detect the type and concentration of SF₆ decomposition components, a Ni-modified carbon nanotube (Ni-CNT) gas sensor has been prepared to analyze its gas sensitivity and selectivity to SF₆ decomposition components based on an experimental and density functional theory (DFT) theoretical study. Experimental results show that a Ni-CNT gas sensor presents an outstanding gas sensing property according to the significant change of conductivity during the gas molecule adsorption. The conductivity increases in the following order: H₂S > SOF₂ > SO₂ > SO₂F₂. The limit of detection of the Ni-CNT gas sensor reaches 1 ppm. In addition, the excellent recovery property of the Ni-CNT gas sensor makes it easy to be widely used. A DFT theoretical study was applied to analyze the influence mechanism of Ni modification on SF₆ decomposition components detection. In summary, the Ni-CNT gas sensor prepared in this study can be an effective way to evaluate and diagnose the insulation status of SF₆-insulated equipment online.

摘要

SF₆ 分解成分检测是评估和诊断 SF₆ 绝缘设备在线绝缘状态的关键技术,特别是当设备中发生绝缘缺陷引起的放电时。为了检测 SF₆ 分解成分的类型和浓度,已经制备了一种 Ni 修饰的碳纳米管(Ni-CNT)气体传感器,通过实验和密度泛函理论(DFT)理论研究来分析其对 SF₆ 分解成分的气体灵敏度和选择性。实验结果表明,根据气体分子吸附过程中电导率的显著变化,Ni-CNT 气体传感器表现出出色的气体传感性能。电导率的增加顺序为:H₂S > SOF₂ > SO₂ > SO₂F₂。Ni-CNT 气体传感器的检测限达到 1ppm。此外,Ni-CNT 气体传感器具有优异的恢复性能,使其易于广泛应用。应用 DFT 理论研究来分析 Ni 修饰对 SF₆ 分解成分检测的影响机制。综上所述,本研究制备的 Ni-CNT 气体传感器可以成为评估和诊断 SF₆ 绝缘设备在线绝缘状态的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5e2/6209957/561ba78fd890/sensors-18-03493-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验